
 1

PassLok 2.2 manual

by F. Ruiz, updated as of version 2.2.5 on 6/25/2015

Outline:
1) What is PassLok?

a) What is public-key encryption?
b) What makes PassLok special?
c) Keys and Locks

2) Keys and Locks
a) How to make a strong Key
b) Generate your matching Lock
c) Spreading your Lock
d) Changing your Key
e) Making a directory of Locks
f) The General Lock Directory

3) Locking and Unlocking
a) Anonymous locked messages: msa
b) Key-locked messages
c) Short locked messages
d) Signed messages

4) Signatures
a) Putting a signature on a text: sig
b) Verifying someone’s signature attached to a text
c) Putting a seal on a text: sld
d) Unsealing a sealed item

5) Real-time Chat in PassLok
6) A walkthrough of the interface

a) Tabs

 Main

 Options

 Help
b) Dialogs

 Key

 Directory Edit

 New Key, email, user name

 Decoy in, out

 Parts

 Image
c) Buttons and Checkboxes:

 2

7) Advanced features
a) Using fake text
b) Hiding stuff inside images
c) Perfect Forward Secrecy (msp) and Read-Once (mso)
d) Decoy mode
e) Locking with Lists
f) Locking and signing files
g) Random Keys
h) Splitting and joining items
i) Making sure PassLok is genuine
j) Lock authentication via text or email
k) Under the hood: Compression, Data correction, Variable Key Stretching

8) Appendix: PassLok vs. PGP

 3

What is PassLok?
PassLok is an encryption program, which means that it turns regular readable text and
files into unreadable gibberish. Only the persons holding the appropriate Keys can then
retrieve the original text or files. PassLok does several types of encryption, including
symmetric and asymmetric (public-key) encryption. Additionally, PassLok has the ability
to disguise its encrypted output as more normal-looking text, and to hide it within image
files. Beginning with version 2.1, PassLok also does real-time secure chat, which can
include even video.

What is public-key encryption?
In encryption of any kind, you encrypt a text or file using a text string called a key. A key
must be supplied during the decryption process to recover the original item, or the
decryption will fail. Typically, the decryption key is the same as the encryption key, and
in this case we speak of symmetric encryption, but there are methods in which one key,
called the “public key,” is used for encryption, and a different “private key” is the one
involved in decryption. This is known as asymmetric or public-key encryption.

Public-key encryption has the huge advantage over symmetric encryption that the
encryption key does not have to be kept secret and the decryption key does not have to
travel, which might expose it to an attacker. When someone wants to send an
encrypted message, he/she only needs to get the recipient’s public key from a public
place where the owner has posted it, and use it to encrypt the message. Only the owner
of the private key, which remains secret and has never left the owner’s possession, can
decrypt that message. Secure communications between computers use some sort of
public-key encryption to get it started, and then maybe switch to the other kind, which
is faster, once the keys involved have been securely transmitted.

What makes PassLok special?
PassLok is designed to preserve the privacy of ordinary people, who are not secret
agents, after they find themselves in a surveillance situation. That means pretty much
the whole world, as we learned from the 2013 Snowden leaks on NSA surveillance
programs. If people had had time to communicate privately with a friend before the
surveillance started, they would have been able to establish a shared secret key that
would enable them to communicate using symmetric encryption. There are many good
programs out there for symmetric encryption, including some that are based on AES
(Advanced Encryption Standard), which the US Government chose in 2001 as its official
encryption program, after a yearlong contest involving a dozen candidates, but these
people can’t use them because they don’t have a shared secret with their friends.

All public-key encryption programs, such as PGP (Pretty Good Privacy) and a few others,
allow people to establish secure communications even when it has become impossible
to transmit a secret, since the secret keys never leave their owners, but what if their
computers are bugged? This is a real concern today, and PGP and most of the rest

 4

cannot help in that situation since they must be installed before they can run. PassLok
can still help.

What allows PassLok to function where the others cannot is its perfect portability.
PassLok is not really installed on your computer; it is not running on a server, either.
Since nothing secret needs to be stored anywhere, nothing secret can be compromised.
PassLok runs equally well on your Windows, Mac or Linux machine, your neighborhood
library’s public PC, or a passerby’s smartphone, and it disappears without a trace after it
does its job.

These are the principles guiding the design of PassLok:
o Perfect portability. Runs on any computer or mobile device.
o Completely self-contained so it runs offline. No servers.
o Nothing should be installed by the operating system. Nothing forced to be written in

the device.
o Highest-level security at every step. No compromises.
o Easy to understand and use by novices. Simple, clean graphical interface. No

cryptographic jargon.

Therefore, PassLok is a web page that can run on any browser, whether computer or
mobile. It is written in standard JavaScript language, which all browsers understand. It
can be saved and run from file, or downloaded from the source when needed, then
thrown away. It is a public, self-contained file, using no outside libraries. It leaves no
cookies. It contacts no servers. All processing happens in the machine, and it works
equally well disconnected from the network. Users can encrypt and decrypt while
offline and only connect when their messages are encrypted and the plain items have
securely deleted.

Most other public-key programs rely on long private keys that must be stored
somewhere because they are impossible to remember; the public keys are even longer.
PassLok allows users to use any text as their secret Key, precisely so they can remember
it without having to write it anywhere (observe that Key is now capitalized; we’ll follow
this convention whenever a word has a special meaning in PassLok). It helps them to
make strong Keys and rewards them for this, but it doesn’t force users to use a
particular sort of Key. Once the user has chosen a secret Key, PassLok applies as many as
220 iterations of SCRYPT key stretching (more than a million), and then 255-bit elliptic
curve functions to produce the matching public key (equivalent to 3,000-plus bits for
PGP and similar programs), and then combines both to use the XSalsa20 stream cipher,
one of the strongest known today.

It is well known that most users tend to choose bad keys or passwords, which a hacking
program such as Hashcat can crack easily. PassLok does not force users to comply to any
rules in choosing Keys, so that a user’s secret Key can indeed be anything he/she likes.
Instead, PassLok evaluates Key strength and applies a variable amount to SCRYPT key

 5

stretching according to the result. Since a large number of key stretching iterations also
causes a long delay to the user (who is warned in any case), this serves to encourage
users to come up with stronger Keys, without forcing them directly. What’s better, since
all bad Keys are still in the pool, hackers are forced to run through all of them before
they get to the better Keys, wasting large amounts of computer time, or risk missing
them entirely.

If users decide to use much more secure random Keys, PassLok helps in several ways.
The easiest is to click the Random button on the new user wizard, which is seen only
when PassLok opens for the first time or a new user is created. This adds a 256-bit
random token to the user’s chosen Key, which is immediately encrypted with the Key
and stored in the device. This provides ultimate security against those attempting to
guess the Key, since they’d have to guess both the Key and the long random token, but
unfortunately causes the user to be tied to the device where the token is stored (this is
similar to what happens with PGP) except in the Chrome app version, which syncs the
token between computers (but then Google has your token, encrypted). PassLok has a
button to export that token in encrypted form, however, so it can be used on a different
device.

 PassLok can also generate a long random Key with the touch of a button, and this is
stored nowhere. Should the user decide to store the Key for further use, PassLok can
split it into several parts to be stored at different locations, so it is harder to
compromise the Key, and then can join the parts back together when the Key is needed.

As of version 2.2 PassLok has evolved into a powerful program that can do many things
beyond simple encryption: self-destruct messages, files, text- and image-based
steganography (hiding), splitting into parts, rich text editing, real-time chat involving
even video.

And then, PassLok sports a very clean interface with only a few buttons. There is a Basic
mode where only the essential buttons and settings are shown, and an Advanced mode
with all the bells and whistles. Help has its own dedicated, searchable tab that is always
available, and more help pops out if the user chooses Learn mode, so that every button
press brings out a dialog explaining what is about to happen.

Keys and Locks
Consistent with the “no jargon” design principle, PassLok replaces the standard talk
about public and private keys with simpler terms drawn from users’ experience. Most
people are familiar with padlocks. You don’t need the key to lock something with an
open padlock, but you do need that key to unlock something with a closed padlock on it.
Therefore, the word consistently used in PassLok to designate a public key is “Lock”
(capitalized in this document, as every time a common word has a special meaning in
PassLok), and the word used for private key is simply “Key”.

 6

There are padlocks that use a numerical or alphabetical combination rather than a key.
Those wishing to open one of such locks must have the combination, given to him/her
by the lock owner. In PassLok, that combination is called a “shared Key,” and
corresponds to what in regular cryptographic jargon is called a symmetric key, used
both to encrypt and to decrypt. When a shared secret is made from a private key and
someone else’s public key, PassLok talks about combining a Key and a Lock to make a
shared Key.

 7

Creating Keys and Locks
The first task for a new user is to choose a secret Key, and then make the matching Lock.
Then the Lock has to be exchanged with other users. A user may want to change his/her
Key later on, for a variety of reasons. This section describes all of these things.

The new user wizard, which appears the first time you use PassLok on a given device or
click the New User button, leads you through the Key selection process step by step.
Here’s the explanation of each step:

1. Introduction. It is essential to have a minimum knowledge of what PassLok is
supposed to do. The first screen contains an optional, fun 3-minute video that
explains it. If you want to skip the whole wizard, there is also a button to do this,
labeled Exit.

2. User Name. PassLok is multi-user (or multi-identity). You must provide a name if
you want to store anything in the permanent directory, so that data belonging to
different users don’t get mixed up. Anything not public is encrypted, so only the
right owners have access to their data. When you restart PassLok, all the user
names recorded in the device are displayed for you to choose one. If there is
only one, there’s no need to choose it.

3. Secret Key. A strong Key is the most important element in your security, so
PassLok will tell you how good it is security-wise as you type it in. If you prefer to
start from an already decent Key, a button will Suggest five random words from
PassLok’s internal dictionary, which you may or may not choose and are free to
modify whichever way you like if you decide to keep them. PassLok does not
store your Key, so it is important that you remember it without having to write it
down.

4. Email or Token (optional). If you now supply some piece of data that is unique to
you, such as your email or phone number, security will be greatly enhanced since
a hacker trying to guess your Key (likely from your Lock, which is public) will be
forced to start the cracking process from scratch without the benefit of ready-
made tables of pre-cracked Keys. This piece of data does not need to be secret,
just unique to you. Unlike the Key, the email will be stored in encrypted form, so
you only have to supply it once. You also have the option to use a random token,
by means of the Random button. Doing so will give you ultimate security, but it
will make it harder to use PassLok on a different machine (although there are
ways to get around this, explained below).

5. Generate and disseminate your Lock. The last button closes the wizard and
displays the Lock matching your Key and additional data on the Main tab. The
idea is to give your Lock to everyone you wish to communicate with you, much
like a (longish) phone number. To make this task super-easy, PassLok will send it
by email to your friends right away, along with a short set of instructions, if only
you check a box before clicking the button.

 8

How to make a strong Key
Since the cryptographic methods used in PassLok are overkill for today’s computer
power, the weak link in the chain is rather the Key chosen by the user. It has been
shown that 80% of users choose bad keys, which a specialized hacking program such as
Hashcat can guess in a matter of seconds. The same program running for an hour would
guess 99% of passwords made by actual users. PassLok knows the worst English 1000
Keys and their variations, and penalizes users who use them as part of their secret Key,
but it doesn’t stop here. It knows the strategies followed by hackers and makes them as
painful as possible.

Since the Lock made from a user’s Key is public, a hacker will try to find the secret Key
by making guesses and checking every time whether the Lock deriving from the guess
matches the user’s published Lock. Once a match occurs, the Key has been revealed and
anything encrypted or signed with it can be decrypted or tampered with.

It turns out that there are only so many reasons why Keys can be bad. Hackers know
them, and this allow them to guess the keys very quickly. If the user avoids making
those mistakes, the Key likely won’t be cracked. So here’s how a typical key-cracking
program proceeds, and how to thwart it:

1. The program first tries every possible combination of numbers, letters
(lowercase and capitals) and special characters comprising four or five
characters. This is called a “brute force” attack, which can only be overcome by
making the key longer than those few characters. Six characters is typically
enough.

2. Since going beyond this involves an exponentially longer computing time, the
key-guessing program then switches to a dictionary of ready-made words for its
guesses, to which it may append or prepend a short number sequence. The
dictionary contains all common words in one or more languages (hackers know
what languages you speak), including variations like common capitalization (first
letter) and misspellings, and letters replaced by numbers or symbols, as in:
appl3, b@n@n@, and so forth. The programs also know keyboard patterns like
qwerty and qazwsxedc, so these are not secure at all. Finally, any personal
information that might be known to others (a birthday, spouse’s nickname, an
address) is sure to have been added to the dictionary if you are the target of a
personal attack.

3. Having tried all single words, the program will now try two words at a time,
beginning with pairs that make grammatical sense: hitme, iwin, etc. (with and
without spaces), then three or more. It may try conventional phrases at this
point: I love you, correct horse battery staple, and so forth.

4. Beyond this point, the hacker’s Zen may take him/her/it along different paths,
but it will always be following patterns and a dictionary. The user still has a
chance to thwart the Zen.

 9

So how does a user make a real strong Key? First of all, recognize how a hacker will try
to guess it and don’t facilitate his/her/its job. That means:

1. The Key must have sufficient length. PassLok won’t accept Keys having fewer
than three characters, but you should aim for at least nine characters.

2. Don’t use common words, which can be found in a dictionary, even if numbers
replace some letters or are capitalized, or are misspelled in a common way.

3. Don’t use (exclusively or in conjunction with common words) personal data that
others might also know.

4. Adding numbers at the end or at the beginning doesn’t add much security.
5. If you have more than one word, make sure the set does not make grammatical

sense. This would still be quite easy to remember.
6. Do add a mix of lowercase, capitals, numbers, and special symbols. This will

force the cracker to sift through a much larger pool of possibilities, in case
he/she/it has the ability to brute force a long Key. This is why websites often
force this criterion, at least partially. PassLok does not force you, but you’ll be
penalized with longer computing times if you ignore this advice.

Examples of Very Good keys:

 Idw2g2s.Thm! (made with the initials, with a couple numerical switches, of “I
don’t want to go to school. They hate me!”)

 1+1+1+1+1=Five (yes, a math formula; math formulas are full of special symbols;
1+1+1+1=Five is even better, though it is shorter, because it is incorrect)

 c0rrect,H0rse.st@ple;b@ttery (even though correcthorsebatterystaple is well
known, and therefore bad as a Key, a different permutation will work, especially
if it contains numbers, uppercase, and symbols; there’s just too many
permutations to keep them all in the dictionary)

 BN32892-3782-GBa (that’s the serial number written at the bottom of my old
laptop; it’s long and random-looking and full of different kinds of characters, and
no one else knows it; it will work so long as I’m near enough to read it)

 toSerOderNão2être (funky take on “To be or not to be,” combining English,
Spanish, German, Portuguese, and French; a hacker might have dictionaries for
all those languages, but he/she/it doesn’t know in which order they were used
and there are just too many permutations)

Even if you follow all these rules, there is still a chance that, given a lot of computing
time and oodles of storage, a powerful attacker might have pre-computed the Locks for
a huge database of possible Keys, what is known as a “rainbow table.” But it is very
unlikely that this database is personalized to defeat you in particular. Thus, adding some
personal data (not necessarily secret) to an already good Key will defeat the rainbow
table. This is why PassLok asks you for your email address, or some other public data
about yourself. To make your life a little easier, this information is stored between
sessions (unlike the Key, which is never stored anywhere), so you don’t have to enter it
again in the same machine.

 10

How can you tell if your Key is any good? Just write it into the Key box of PassLok, and a
text will appear giving you the score and the time it will take to process it on that
machine. It can go from Terrible to Overkill, with Good being the target to hit so things
don’t get sluggish. In Advanced mode you also get a number for the information entropy
of the Key, measured in bits. If the Key is a needle, then the information entropy tells
you how big the haystack is. The effect is exponential, so that an increase of just one bit
of information entropy means that the haystack gets twice as large, an increase of two
bits makes the stack four times bigger, and so forth.

In addition to the 1000 most common passwords mentioned earlier, for which PassLok
gives no credit in terms of information entropy, PassLok includes a dictionary of the
10,000 most common English words. The idea is to give less credit for series of
characters that can actually be found in a dictionary, as opposed to sequences that
aren’t there. PassLok is smart enough to know if a word has been s1mply m0d1fi3d by
changing a few characters. For the time being all the words are English-based, but
future versions of PassLok will use different dictionaries based on the interface
language.

Generate your matching Lock
After you type your secret Key into the key input box and click OK (we are assuming
your email or whatever additional data you entered the first time remains recorded),
you are ready to make its matching Lock. To do this, just click the myLock button. The
Lock will appear in the Main box.

You can tell it is a Lock because:

1. it begins with a PL**lok or PL**ezLok tag (where ** is the version number),
2. followed by an equal sign,
3. exactly 43 base64 alphanumeric characters (numbers and lower- and upper-case

letters, plus + or / symbols) for regular Locks, exactly 50 broken up into groups of
five for ezLoks, which constitute the actual Lock data

4. then another equal sign,
5. optionally, another set of exactly 10 alphanumeric characters, which are used to

correct errors that might have slipped into the actual data,
6. a third equal sign,
7. and a final tag like the one at the beginning. Despite its great security, it is short

enough to be shared within a text message (160 character limit) or posted on
Tweeter (140 characters).

By default, PassLok will display your ezLok, which contains no capitals (except “L”,
because smallcase “l” tends to look too much like a “1”) and is much easier to dictate
over the phone, but you can display the regular version instead by unchecking ezLok in
the Options tab before clicking myLock. Either version can be used interchangeably.

 11

Your Lock is not a secret; your Key is. There is a one-to-one correspondence between a
Lock and its Key, but it is nearly impossible to retrieve the Key from its Lock. To achieve
this, other than by guessing the Key until the correct Lock is made, would involve finding
a computationally inexpensive solution for the “discrete logarithm” problem over an
elliptic curve. No such solution has been found to date. Whoever achieves this is pretty
sure to get the Fields medal (equivalent to a Nobel Prize in mathematics), so it’s not for
lack of smart people trying.

Spreading your Lock
People will need your Lock in order to lock messages that only you can unlock using your
Key, so it’s imperative that your Lock be publicly known. Think of it as a phone number
and treat it as such. You give it to those who you wish to call you back. You can give
someone else’s Lock to a common friend, too, and nobody gets upset.

Now, a Lock is a bit long and complicated for people to read it off, let alone memorize it,
but there are other ways to give it to someone else. As mentioned above, you can text it
and you can Tweet it. You can send it by email by clicking the Email button on PassLok,
which will open a pre-formatted email with only the recipient’s address and the title left
to be filled. Pressing the SMS button will open the default texting program if you are
running PassLok on a mobile device. You must select and copy the Lock first, however,
because standard JavaScript code does not have direct access to the clipboard.

If you don’t have connectivity, you can always read it aloud. An ezLok contains only
numbers and lowercase letters (except “L”), so it takes only about 20 seconds to read it
as someone writes down (the dashes are there only to make it easier to read, and are
not needed for functionality). If you have a mobile device, you can always copy it into an
app that would display a QR code, which another device can read off the screen, but the
process likely won’t be as fast as simply dictating it.

When you first use PassLok, it will offer to send your Lock to whomever you want by
regular email. The only thing you need to do is leave a checkmark on and supply the
email addresses when the ready-made message appears in your default webmail. This
way you start out with a small network, without having to worry about anything beyond
storing your friends’ Locks when they are sent to you.

Other ways of spreading your Lock are:

 Add it to your email signature. This way anyone who receives an email from you
will also get your Lock. Unlike PGP public keys, which also get spread this way,
PassLok Locks don’t add much bulk to your signature: barely one line.

 Write it on your business card. Better yet, add a QR code version of it to your
business card. People will be able to retrieve your Lock long after you met, and
they will have a reasonable assurance that it is authentic (more on this later).

 Post it on social media as part of your public profile. People will find it easily and
use it if they have something confidential to tell you.

 12

 Websites, directories, you name it. The more places have your Lock, the easier it
will be for others to find it, and the harder for an attacker to switch it with a
counterfeit Lock.

 Upload it to PassLok’s General Directory (more on this later).

Unless you hand your Lock to someone in person, there’s always the chance that an
attacker might intercept the communication and replace your genuine Lock with a
counterfeit one, to which he/she has the Key. Then he/she will be able to read secret
messages meant for you, and then maybe pass on to you something else that suits
his/her evil purposes. You’ll never know that this person has become the “man in the
middle” between you and your friends, so how can people know that a Lock is genuinely
yours?

This is why you can attach a web address to your Lock without affecting its function. You
can authenticate your Lock by means of a video, like this:

1. Copy your Lock to a piece of paper. If it is printed bold so a camera can pick it up,
so much better.

2. Then grab a smartphone and make a video of yourself reading your Lock or a
part of it. It is enough to read the first 15 characters or so of an ezLok. If you
have background music, so much better so nobody can hack the video to pieces
and make “you” read something else.

3. Put the video somewhere online and copy its address.
4. Append that address to your Lock, preferably on the line right below it. From

now on, keep the two things together every time you post your Lock.

When someone who knows you sees your Lock with a video address attached to it,
he/she can always copy that address and watch you reading the Lock, which will assure
him/her that it is legitimate. No need for webs of trust, certification authorities, or any
of the things that were (and still are) recommended for authenticating PGP keys. Aren’t
you glad you live in the twenty-first century?

If it is impossible to use a rich channel such as voice or video to authenticate a Lock,
there are still ways to detect by text or email if a man-in-the-middle is intruding into
your conversation. This is explained in the Advanced section.

Changing your Key
Let’s say that, despite your great care to keep your Key secret, never writing it down
anywhere and keeping it masked as you type it, you fear it has been compromised. Or
maybe you want to use a stronger Key or simply got tired of the old one. How does one
handle this situation? Programs like PGP have a complex system of expiration dates,
revocation certificates, etc. What does PassLok have to let people know that a given
Key, and therefore the Lock derived from it, is no longer good?

 13

One word: nothing. What do you do when you change your phone number? Does your
phone number have an expiration date? Do you need a certificate to let people know
that it has changed? No? Same with a PassLok Lock.

When you change your phone number, you notify first those who are most likely to use
it: family, friends, co-workers, merchants, authorities. Then you might post the new
number in a public place, such as a website or a social network profile. But not
necessarily. Very likely, knowledge of the new number will spread little by little, as you
and your friends tell other people. Those who never find out are probably best left in
the dark. Same with a Lock.

Still, if you want the whole world to know right away that your public Lock has changed,
you can head to the General Directory and change the Lock you have previously posted.
This is as easy as clicking General Directory on the directory Edit dialog. Then you only
have to supply your email address, which is required for confirmation, and click Post.
After you click on the link emailed to you, the change in the General Directory is
complete, so that users looking for your Lock will get the Lock matching your new Key.

You can check that this has happened by clicking Find in the General Directory screen
while both your address and your Lock are displayed in their respective boxes. A green
message will confirm that your Lock and the posted Lock match. It is a good practice to
check from time to time even if you have not changed your Key, since email
confirmation is far from perfect and there is always a chance that someone might have
posted a counterfeit Lock for your email address.

Changing your Key is as easy as clicking the Change Key button in the Options tab
(Advanced interface). A dialog asking you to type the new Key twice appears and, if both
copies agree, PassLok re-encrypts all its stored data under the new Key.

Now, it may be that someone sends you a message locked with an old Lock of yours.
You will know when you are unable to open the message with the current Key. But,
unlike physical locks that can no longer be opened when the key is thrown away, you
can always unlock those messages using the old Key, provided you still remember it.
PassLok won’t let you start with a Key different from the previous one you used because
then you’d start storing stuff encrypted with a Key that you might not remember again.
But if you click Cancel at the Key input screen, it will let you use whatever Key you want
until you restart again. When you try to unlock the message, you will be asked again for
the Key, and at this point PassLok will accept anything you give it.

Making a directory of Locks and shared Keys
As you collect more and more Locks for people whom you wish to send private
messages, it can get unwieldy. What is a good way to keep all those Locks straight?

 14

At the risk of repeating myself once too many, let me say it again: a Lock is a lot like a
phone number. Whatever works for a phone number will probably work for a Lock, too.
You can store Locks in the same online database that you are using right now for phone
numbers, email addresses, etc. For instance, the Gmail Contacts database has the ability
to add custom fields. Why not add a “PassLok” field for each person whose Lock you
have, and put the Lock there? Locks are not secret information, so it doesn’t matter very
much that someone might be able to read it at some point. What matters is that the
Locks be free from tampering by third parties, which most web mail providers swear is
impossible.

If this weren’t easy enough, PassLok can keep its own directory within the program
itself, and it doesn’t get deleted when the app is closed or even if the browser’s cache is
flushed. When you want to store somebody’s Lock or a symmetric key you share with
that person, you only need to click the Edit button on the Main tab, type a unique name
in the top box of the dialog that appears, then paste the Lock into the lower box, and
click the Save button. The Lock or shared Key will be permanently saved, encrypted by
your secret Key for good measure. From then on, using that Lock or shared Key is as
easy as clicking on its name displayed on the Main tab.

Another way to use that Lock or shared Key is to click the Edit button and then start
typing the name on the top box of the new dialog. As soon as the full name appears on
the line above it, you can stop typing and PassLok will use the item. If you type Enter at
this point, the item will be decrypted in the lower box so you can see it.

Your directory does not need to stay with the particular device where you entered it.
PassLok has a nifty Move button (visible in the Advanced interface) which takes the
entire directory, encrypts it, and puts it on the Main tab, ready to be copied, emailed, or
whatnot. PassLok will then offer to delete the directory from the device, should you
want to cover your tracks, but you can cancel at this point and the packaged directory
will remain in the Main tab.

Even the most user-friendly PGP-based programs, such as Mailvelope, take more steps
in order to do this, because PGP public keys are so large. What’s worse, you don’t see
what’s being done, so you have to trust that whatever they use for storage is safe and
free from intrusion.

(Chrome app only)
If you are using the Chrome Web Store version of PassLok, there is another nifty feature
that you should know about, and this is that your directory entries are automatically
synced through Google as you save them. This means that you can go to a computer
that you have never used before (say, at the local library), open Chrome, log in with
your Google account, and find the PassLok app ready for you, directory and all, so long
as you enter the same user name and Key. The entries remain encrypted as they are

 15

stored in Google’s servers, so you should not be too concerned about their having your
data.

The General Directory
PassLok also has an official web-based directory where people can post their Locks for
others to see. Only Locks, though; shared Keys are confidential by nature, so it doesn’t
make sense to post them. This function is accessed from the directory edit dialog, by
means of a big button at the top, labeled General Directory.

Let’s say you want to lock a message for your friend Alice to read, but you don’t have
Alice’s Lock. You head to the General Directory and type Alice’s email address on the top
box (alice@wonderland.org), and then you type Enter or click the Find button on that
screen. If Alice has uploaded her Lock to the directory, it will appear in the lower box.
When you go back, you will find that the Lock has been copied into the lower box of the
directory edit dialog, so the only thing left is to give it a name and save it.

Now, you may wonder whether this is really Alice’s Lock, or maybe someone else put
that Lock in the general directory, in which case I may be locking messages for that
someone else to read. Not good. The General Directory has two features that help
prevent this scenario:

1. Posting a Lock on the General Directory involves replying to an email containing
a special link, without which the posting is not complete. Someone who wants to
post a fake Lock for Alice would also have to intercept the email that goes to
alice@wonderland.org, in order to click on that link.

2. The General Directory has space for adding an authenticating video to each Lock,
instructions on how to make this video, and a button to view it. If Alice has
added that video, you can just click the Play button and watch Alice reading a
portion of her Lock.

The video is actually uploaded to one of many video-hosting websites, such as YouTube
or Vimeo, so what is attached to the Lock is a short web address, which becomes a part
of the Lock and doesn’t affect its function.

Let’s say now you want to add your Lock to the General Directory so that others can find
it. You open the General Directory page, write your email address in the top box, and
the Lock in the bottom box; then you click the Post button. A message tells you that an
email has been sent containing a link that you must click in order to complete the
process. So you open your email client, which should be getting that link any time now.
Sometimes email clients are overzealous filtering spam, so you may want to check the
spam folder if the email takes too long to show up. When you get the link, you click on it
and another page tells you that the process is complete.

The video can be added at the same time, by placing its URL on the line below the Lock,
or later on. You can update your Lock as many times as you want, and in each case the
update won’t happen until you click on a confirmation link sent by email. There is also a

mailto:alice@wonderland.org
mailto:alice@wonderland.org

 16

Remove button that you can click after filling in your email address if you wish to
remove your email and its associated Lock from the directory (email confirmation
required).

Finally, if somebody’s Lock is not yet in the General Directory you can remind that
person that people would like to have it listed there. There is an Invite button that
produces a ready-made email with instructions on how to post a Lock. Unlike the other
emails, this one comes from your own account, so the invited person can feel reassured.

The General Directory looks a lot like the rest of PassLok, except for a different color
scheme. This is to remind you that you are looking at a different page, which connects
to a server. If somebody is monitoring that server, this may lead to your location being
found, and PassLok will warn you about this. Integration with the rest of PassLok is
limited to copying the Lock found in the General Directory. This is because we want to
keep the encryption code entirely separate from any server.

 17

Locking and Unlocking
Having covered the essentials of Key and Lock management, we go now to the process
of actually locking and unlocking messages. Despite its small size, PassLok is one
complex piece of software, comprising five different locking modes, with one variant
and a secondary mode that can be combined with the main modes. We’ll start with the
only one available with the Basic interface, and then introduce the others.

Anonymous locked messages: msa
When a message is locked with the recipient’s Lock, so that only he/she is able to unlock
it with his/her secret Key without having to identify the sender, the result is an
anonymous locked message. It looks like a piece of gibberish, bracketed by PL**msa
tags, where ** is the version number.

This is what you do to lock a message in this mode:

1. If you have entered the recipients’ Locks into your directory, just select them on the
top box in the Main tab. Several Locks can be selected at once. Otherwise, click the Edit
button and enter the Locks, one per line, in the lower box of the dialog that appears,
then go back. It is okay if the tags up to the "=" signs are missing, or extra spaces,
carriage returns, or special characters other than = + or / have been added.

2. Write or paste your message into the Main tab. Click the Lock/Unlock button. The
locked message will replace the original message. It will normally include identifying
tags at both ends, unless the no Tags checkbox has been checked in the Options tab
prior to locking. Copy it and paste it into your communications program or click Email to
open your default email.

If you have received a locked message with PL**msa tags, here is what you do to unlock
it:

1. Paste the locked message into the Main tab. It is okay if it is broken up by spaces,
carriage returns, and special characters other than = + or / or is missing its tags. Then
click the Lock/Unlock button. The unlocked message will appear on the Main tab,
replacing the locked message. If you haven’t entered your Key or it has been so long
since you used it that PassLok has forgotten it, you will be prompted to enter the Key,
and then the unlocking process will continue.

If the unlocking fails, this is likely because the locked message has been corrupted (make
sure the tags are intact) or because the Lock used to lock it does not match your secret
Key. Remember one more thing, though: you won’t necessarily know for sure who has
sent the message. Proceed accordingly. In any case, this is likely to be the most common
mode used because it does not require those sending a message to have any secret in
common with those receiving it.

 18

Key-locked messages
In PassLok, a shared Key is a code that both the sender and the recipient know. This
means that it must have been shared beforehand for the exchange to work. If you lock
something with your secret Key, for instance, the recipient won’t be able to unlock the
message because he/she does not have your Key (remember that you should NEVER
give your secret Key to anyone, or even write it down). So don’t use your secret Key, but
a different Key that you can afford to share with someone else. All that was said above
about making good secret Keys applies to making shared Keys.

In this mode, the locked gibberish ends up bracketed with tags reading PL**ms*, where
** is the version number and the final character tells you the type of locking selected in
Options, which doesn’t really matter. The tags won’t tell you that a shared Key was used
for locking the message, but hopefully you can figure this out knowing the sender,
because you share a secret with that person.

Here’s what you do to lock a message with a shared Key:

1. If you have entered the Keys you share with the recipients into your directory, just
select them on the top box in the Main tab. Several shared Keys (mixed with Locks, too)
can be selected at once. Otherwise, click the Edit button and enter the shared Keys, one
per line, in the lower box of the dialog that appears, then go back; there is no need to
save anything.

2. Write or paste the message into the Main tab. Click the Lock/Unlock button. If you
entered the shared Keys directly, a prompt will ask you to confirm that these are
legitimate shared Keys before the locking actually takes place. Then the locked message
will replace the original text. Copy it and paste it into your communications program or
click Email to open your default email.

If you have received a message that you suspect is locked in this mode (remember, the
tags won’t tell you), here’s what you do to unlock it:

1. If you have entered the Key you share with the sender into your directory, just select
it on the top box in the Main tab. Otherwise, click the Edit button and paste the shared
Key in the bottom box of the new dialog, then go back.

2. Paste the locked message into the Main tab. It is okay if it is broken up by spaces,
carriage returns, and special characters other than = + or / or is missing its tags. Then
click the Lock/Unlock button. The unlocked message will replace the locked message.

Unlike in anonymous mode, you would know who sent you a Key-locked message,
because only people knowing the shared Key are able to lock the message to begin with.
If the unlocking process fails, this is usually because the locked message has been

 19

corrupted (make sure the tags are intact), or because the shared Key used for locking is
not the same you tried for unlocking.

Locking and signing files
Locking text is nice, but what if what I need to exchange with someone is not text, but a
picture or a recording? Can PassLok help with that? Sure it can. Here are two completely
different methods to do that.

The easy one, which works even on a smartphone. Deal with the item as if it were a
large attachment that your email program cannot handle. This is typically what you’d
do:

1. Take the picture, recording, or whatever, and upload it to a cloud service. For
best results, archive it locally before the upload, using an encryption
password. If the cloud service is anonymous, so people don’t know who
uploaded it, so much better.

2. The cloud service will give you a short URL to download the file you just
uploaded. Put that URL in PassLok and lock it in whichever mode you prefer,
along with the archive password if there is one. Then send the locked result
to the recipient.

3. The recipient will unlock the message, retrieve the file from its cloud storage
location, and optionally decrypt it using the password.

The harder one, which involves loading the file itself into PassLok:

1. At the bottom of the Main tab, find a button labeled something like Choose
File (the actual wording depends on the browser used). When you click it, a
dialog opens so you can navigate to the file (images only, on mobile devices).
When you click OK, the file is converted into base64 text and loaded into the
Main tab.

2. Now you can lock or sign the file as if it were any piece of text. After locking,
it will look just as random as any locked text and there will be no indication
that this is actually a file.

3. The recipient will unlock the locked file in the normal way, and then will go to
the Options tab and click the Save button, which will instruct PassLok to
convert the encoded file back to its original form. What actually happens at
this point depends on the browser. Mobile browsers usually display the file,
provided it belongs to one of the types they recognize. On a PC or Mac,
Chrome and Firefox offer to save the file to the default downloads directory
and its original name, Safari downloads it with a generic name, Internet
Explorer does nothing.

If you don’t want to use PassLok’s built-in file encoder, there are other encoding
programs that you can download for just about any operating system (the function is
actually built into OSX and Linux). If you use one of these programs, just copy and paste
the text between it and PassLok, and you’re set.

 20

If you choose a web program, be aware that your file is going to be sent to a server,
likely unencrypted, to it can be turned into text. This works so long as the encoded file
can be fit in the browser memory, which is usually a few megabytes. It is relatively slow
but does not involve storing the file anywhere. On the other hand, when a file travels in
an email, it is also being stored at least in the mail server, so this is not as different as
one might think.

If what you want to do is to sign or seal the file rather than to lock it (see about signing
text in the Advanced section), you either have to load the whole file into PassLok,
encoded to base64 as described above, or better yet, load a unique ID of it, which is
what you’ll sign.

This is the easiest process to sign a large file:

1. Take a SHA256 (or any other hash, really) of the file. You can do that directly
via Terminal commands in OSX and Linux, and there are several free
programs for Windows that do the same.

2. Put that string into the main box of PassLok and apply your signature by
clicking the Sign/Verify button (visible in the Advanced interface). The
signature is then appended to the hash.

3. Someone wishing to verify the signature will first have to take the SHA256 of
the file (which should be the same you signed), append the signature to it,
put the result on the Main tab of PassLok, select the sender’s Lock on the
directory, and click Sign/Verify. If everything works okay, a green message at
the top will say so.

 21

Real-time Chat in PassLok
Some modern web browsers, including Chrome, Firefox, and Opera (but, sadly, not yet
Safari or Internet Explorer, or anything running on iOS) support a protocol named
“webRTC”. RTC is short for “Real Time Chat”. This offers the possibility to establish real-
time secure exchanges that can include text, files, audio, or even video.

In order to start a chat session, you use PassLok to make an invitation involving all the
people who are supposed to be able to connect to the chat. To do this, simply select all
the names in the directory on the Main tab (you can omit yourself, since you’ll be added
automatically no mater what), and then click the Chat button at the bottom of the
screen. Then a dialog appears, offering a selection for the type of chat (text and files,
that plus audio, all that plus video) and a space to add an optional short message (43
characters max) which might include the time for the chat and other info, and the
opportunity to name the chatroom as you like (otherwise some nondescript words,
chosen randomly, will be used to name it). When you click OK, a random-looking item
bracketed by PL**chat tags appears on the Main tab. This can be emailed or sent by any
other insecure channel, since only those people you selected on the directory will be
able to unlock it.

Recipients will then unlock the invitation by placing it on the Main tab and clicking
Lock/Unlock or Chat. The sender will do the same. If there is a message, a popup will
display it and ask if you want to continue (maybe it’s not yet the time for the chat, so
the recipient might want to cancel and try again later). Then a new screen will open
containing some short instructions and including a small box and a button. The small
box is to write the name you want to use during the chat so the other participants can
know when you’re typing something into the common log. The button will be labeled
“Start” if you are the first participant arriving at the chat room, or “Join” if someone else
got there ahead of you.

If you are the first, clicking Start will initialize the session. A message will appear telling
you that you’re waiting for others to join. Clicking Join connects you to each of those
already in the session. Their chat names appear listed near the top of the screen, and
messages on the log alert all participants whenever someone joins or leaves. If the chat
involves audio or video, you will be asked for permission to access those features. From
then on, you are connected directly to each one of the participants, using a separate
encrypted channel for your interactions with each of them.

If you need to use PassLok in the middle of the chat session, there is a button that will
take you back without disturbing the chat. To go back to the chat, click the Chat button
on the Main tab. If something gets screwed up during the chat, there is a button to
reset it at the top of the screen, at which point you will be asked again for a name. To
really disconnect from the chat, restart PassLok.

 22

You may be wondering about the security of this whole thing. A lot of it depends on the
security of the webRTC protocol itself, which works more or less this way when Alice
wants to chat with Bob:

1. Alice contacts an external “signaling” server so she can know what her external
IP number is. This IP number is likely quite different from the one given to her
computer by her local network, which she can check without calling anyone.
Unfortunately, connections from outside the network need her IP number as
seen from the outside.

2. After getting this address, she sends it to Bob by email or similar protocol, or
perhaps using a (probably different) server that both have agreed upon
previously.

3. Bob gets Alice’s request to connect and so he does the same she did, and sends
her his external IP number.

4. Now that both have each other’s current address, their respective browsers can
negotiate a direct connection between them. The process, which involves
multiple back-and-forth steps, is similar to SSL/TLS, which browsers use to
connect securely with servers to get “https” pages (those with the little padlock
shown next to the address).

5. When the negotiation is complete, Alice’s and Bob’s browsers have a direct
connection between them. Whatever Alice types/says/shows is transmitted
encrypted by a random key. Bob decrypts it on his end, and what he sends back
is encrypted by the same key.

6. When they disconnect, the key disappears from their machines so even if
someone was recording all the traffic between them, he/she/it can no longer
decrypt it.

A nice feature of the webRTC protocol is that the connection is direct after the initial
exchange of addresses. Third parties are only involved in setting up the connection and
then drop out.

Now, PassLok is supposed to contact no servers, so how can it be doing all this? Actually
it’s not. When a chat session begins, PassLok loads a separate web page, from a
different server, to handle the chat. This way, any rogue code that might find its way
into the chat session (not likely, but possible every time you connect to another
computer) is prevented from seeing any of the truly private data that PassLok works
with.

The locked invitation made by the main PassLok code contains four pieces of
information:

1. An optional short message, which may be used, for instance, to announce the
time that the chat session begins.

2. A code indicating the type of chat: text, audio, or video.

 23

3. The “chatroom name,” which tells participants where to go in order to connect.
It can be what you chose or, if you didn’t choose a name, one or two nondescript
words, chosen randomly. The idea is to be as inconspicuous as possible.

4. A random password, which the computer initiating the chat will ask of those that
follow. If they don’t supply the correct password, they cannot connect to the
chat.

When a recipient unlocks the invitation, PassLok first displays the message and, if the
user decides to go ahead, then loads the webRTC-based chat code from a different
server and passes to it the rest of the data contained in the invitation. In the current
version, the chat code then connects to Firebase (a high-volume game-oriented
signaling server owned by Google) and gives it the chatroom name. For the first
participant, Firebase creates a database under that name, where it stores the external IP
number for each computer trying to access it. It gives those addresses to computers
joining later. So Firebase’s role is limited to a sort of cubby hole where participants drop
in their IP addresses so others can find them (and, of course, finding those addresses to
begin with, which is hard for participants to know before they connect).

The code running on the first participant’s computer has additional roles. An important
one is allowing or rejecting incoming participants. A reason for rejection is not supplying
the correct random password when connection is requested. This password was never
sent to Firebase, so the only way to know it is to unlock the invitation. Thus, snooping
on Firebase won’t be enough to be able to connect to the chat, even as a dumb listener.
Once the webRTC connection is established, the browser’s built-in encryption code
takes over until the session ends. Anyone intercepting the data (which doesn’t travel
through any central server) needs the session key for each pair of participants in order
to decrypt the data transmitted between them, but this key disappears the moment one
of them restarts or closes the chat.

A possible vulnerability, which the webRTC code cannot possibly defend against, is for
someone to get the contents of the invitation from a participant (which includes the
random password), and then connect to the chat impersonating someone. This is
especially so for text-only chats, where the participants do not see or hear each other.
To prevent this possibility, you may want to establish the following protocol for your
chat session:
1) A new participant has just joined the chat. Someone sees that, and types in a bunch

of gibberish text, like for instance “lkuyto*7987.”
2) The newcomer sees this, and understands he/she is being asked for authentication.

He/she copies the text, goes back to PassLok, and pastes it on the Main tab. Then
he/she seals it by selecting Seal on the Options tab and clicking the Sign/Verify
button, copies the result, goes back to the chat, pastes it into the chat input box,
and sends it.

3) Each of the other participants copies the result, goes back to PassLok, pastes it on
the Main tab, selects the presumed participant’s Lock on the directory, and clicks
Sign/Verify. If the new participant is who he/she claims to be (meaning he/she is in

 24

possession of the Key matching the Lock), the seal will be verified and the original
gibberish text will appear in the box.

This won’t work, obviously, if the newcomer’s secret Key has been compromised.
Another way it won’t work is if the stuff to be sealed is predictable ahead of time, so an
interloper has been able to obtain a validly sealed version of it.

 25

A walkthrough of the interface
We now describe all the objects on the PassLok screens and what they do. The pictures
below are from an iPhone, so the screens will look somewhat different in other
platforms.

Tabs

Main Options Help

Main Dialogs

Key Directory Edit

 26

Each of these tabs and dialogs contain text-based buttons and checkboxes that can be
clicked, text boxes that can be filled, and text. Let’s see a description of them:

Buttons and Checkboxes:

Deselect
This button clears the selection made in the directory box.

Edit
This one opens the directory Edit dialog, where Locks and shared Keys can be
added for immediate use of for permanent storage.

Lock/Unlock
This button has context-sensitive functionality. If PassLok does not find a
locked message on the Main tab, it will lock the contents using whatever has
been selected in the directory, or entered via the Edit button. If a locked
message is found, it will attempt to unlock it. Then the successfully unlocked
message ends up replacing the locked message originally in the main box.

Sign/Verify (advanced)
This button also has context-sensitive actions. First PassLok tries to find a
signature or seal on the Main tab. If it does not find it, it concludes that you
want to sign or seal the text in the box. If PassLok finds that a signature or
seal is already there, it will attempt to verify it using the Lock selected in the
directory or entered via the Edit button. A message will say whether or not
verification has succeeded.

myLock
When you click this, the Lock matching your Key is displayed. If you have not
entered your Key yet, a dialog will ask you for it and the email/token, and
then the Lock will be displayed.

▼ (extra buttons)
This button displays a new set of buttons above the main box, dealing with
stealth and secret splitting, on the Advanced interface.

▲ (main buttons)
By clicking this, the buttons dealing with locking, unlocking and signing,
return to the main screen, on the Advanced interface.

Text hide (advanced)
When this button is pressed, any PassLok item in the box is converted into
fake text, useful to avoid detection by email scanners, replacing each
character with a word taken from the current cover text. The type of
encoding used depends on radio buttons on the Options tab. To retrieve the
original item from fake text, place it in the box and click this button again.
The encoding type is determined automatically upon decoding, but you must

 27

use the same cover text that was used to make the fake text when Words or
Chains encoding is used.

Image hide (advanced)
This button opens a new screen where images are displayed so that PassLok
items can be hidden within them.

Split/Join (advanced)
When this button is pressed, a popup asks for the total number of parts to be
made, and the minimum needed to retrieve the contents of the box. PassLok
performs a Shamir Secret Sharing algorithm to generate those parts, which
are then displayed. These parts can now be stored in different places or sent
to different people. If a sufficient number of parts are present on the Main
tab when this button is pressed, the same algorithm combines them to
recreate the original text.

Rich … Plain (non-mobile only)
This button displays or hides a ribbon above the main box, which contains
buttons and selection lists for formatting text.

Clear
Clears the box.

Email
Opens your default webmail with a pre-formatted message that depends on
what is contained in the main box. If the box contains nothing, the email
message gives instructions on how to obtain PassLok and generate a Lock,
and includes your personal Lock. This is handy to invite others to join your
PassLok network.

SMS (mobile only)
On mobile devices, it opens the default texting (SMS) app. Since nothing is
copied automatically from the PassLok page, make sure to copy into the
clipboard whatever you want to send before pressing this button.

Chat
If the Main tab does not contain a chat invitation, clicking this button
instructs PassLok to make one for the people selected in your directory (or
entered via the Edit button), including a short optional message. If there is a
chat invitation, this button unlocks it and opens up the chat screen, from
where you can start the chat session if you are the first to arrive, or just join
it if already in course. Once a chat session has started, clicking this button
returns you to the session no matter what is on the Main tab.
Be aware, however, that not all versions of PassLok support all of this. The
iOS version, for instance, only supports making the chat invitation.

 28

Choose File
Pressing this button opens a dialog to select a file (an image only, on iOS
devices), to load into PassLok. It can be any kind of file. The file is then
converted into base64 text and loaded on the Main tab, ready to be
processed.

Save
This button does the reverse of the button above. When an encoded file
(which looks like gibberish text, with some tags at the start) is shown on the
Main tab, pressing this button converts it back into a file, which is then
downloaded or displayed in the device. How the file is downloaded or
displayed depends on the browser and the type of device. If the contents of
the box are not an encoded file, PassLok will attempt to save it as a text file.

Interface
This and the next few items are on the Options tab. The interface selector
has two choices: Basic, which shows only the most essential buttons and
settings, and Advanced, which displays everything.

Locking mode (advanced)
In Basic mode, all messages are locked in Anonymous mode. The Advanced
interface makes three more modes available: Signed, PFS (short for Perfect
Forward Secrecy), and Read-once.

Other modes
There are a number of additional modes, dealing with locking as well as other
aspects, which are selected individually in this area.

Error correction (advanced)
Optionally, PassLok items (Lock, message, etc.) can be protected against
errors introduced in transmission. There are two kinds of error correction: RS
(short for Reed-Solomon), adds a code to the tag at the end of the PassLok
item, which can correct up to 5 erroneous characters for every group of 245
characters; Triple correction prints three copies of the item, so the original
can be reconstructed through a “two out of three” algorithm.

Signature (advanced)
The type of signature generated by the Sign/Verify button is selected with
these radio buttons. There are two types: Attached (signature appended to
the signed text), and Seal (sealed text replaces the original).

Text hiding (advanced)
These radio buttons select the type of text hiding used when the Text hide
button is pressed. There are five types: Letters (default) hides the item as
varying encoding of some of the letters and most of the spaces; Sentences
produces complete sentences of varying length; Words replaces characters

 29

with isolated words, so the result usually does not make grammatical sense;
Spaces encodes the original as single or double spaces in the resulting text.
The mode is automatically selected during decoding. The recipient does not
need to have the same cover text in order to extract the original PassLok
item.

Change (advanced)
This area contains buttons used when you want to change your user name,
your Key, or the email/token.

Backup/Remove (advanced)
The buttons in this area make a backup (and optional delete) of either your
personal settings only, or the complete directory stored on your device. In
both cases, an encrypted item is created on the Main tab, which restores the
items after clicking Lock/Unlock.

“Other modes” detail

Learn
When this is checked, a popup explaining what is about to happen and
requesting confirmation to continue comes up every time a button is clicked.
Useful for learning how to use PassLok.

Short (advanced)
When this box is checked, PassLok knows that locked messages must be at
most 160 characters long so they can fit within an SMS text message. Tags
are stripped and the message itself is truncated so it can fit within the limit. A
message above the text box tells the user how many characters are left
before the message is truncated. It is not necessary to check this box for
unlocking.

Decoy (advanced)
Checking this box causes PassLok to expect a second, hidden message in
addition to the main message in the main box, locked under a different
shared Key. When you are locking a text, a popup will appear asking for the
special decoy Password and the hidden message. When unlocking, a popup
asks for the decoy Password. The hidden message is displayed above the
main box if it is successfully unlocked. This mode is especially useful if you
suspect that you or someone else may be forced to relinquish his/her key.
There is no way short of successful unlocking to tell whether or not a hidden
message is present.

ezLok (advanced)
Unchecking this box causes your Lock to be displayed in base64 format when
the myLock button is clicked, rather than the default format using only

 30

numbers and case-insensitive letters. PassLok can use ezLoks interchangeably
with base64 Locks.

No Tags (advanced)
If checked, the usual tags of the form PL**###, where ** is the version
number and ### is a string identifying the item, are omitted at the beginning
and the end of every Lock, message, signature, or part generated by PassLok,
and emails invoked by the Mail button do not include text to help the
recipient identify the contents. If unchecked, tags and additional text are
added.

encrypt Locks (advanced)
PassLok normally stores Locks in plain text, since Locks are not supposed to
be secret. If you would like Locks to be stored encrypted with the secret Key,
check this box.

The Images screen (accessible in the Advanced interface) also contains a few buttons,
which are explained below.

Choose File (advanced, images screen)
This button opens a dialog that allows the user to select an image (jpg, gif,
bmp, png are all OK) which will be used to hide the contents of the extra
screen. It can also load an image that contains a hidden PassLok item, so it
can be revealed.

PNG Hide (advanced)
When this button is pressed, the contents of the extra screen are hidden
within the least significant part of the pixels in a PNG image, so it is
indistinguishable to human eyes. You can then save the image by right-
clicking on it (long press, on mobile devices), and selecting “save as…” from
the menu that appears.

JPG Hide (advanced)
When this button is pressed, the contents of the extra screen are hidden
within the pixels of a JPG image, so it is indistinguishable to human eyes. You
can then save the image by right-clicking on it (long press, on mobile
devices), and selecting “save as…” from the menu that appears. This function
is not available on iOS devices.

Reveal (advanced)
This button does the reverse of the Hide button. If the image displayed on
screen contains a hidden PassLok item, pressing this button extracts it and
writes it on the main screen, or otherwise a message tells you that there is
nothing to reveal. This function is not active on iOS devices, which change
image information upon loading.

 31

General Directory
This and the remaining buttons are found in the directory Edit dialog, which
opens when the Edit button on the Main tab is pressed. This button opens
the General Directory screen in a frame which has no direct communication
with PassLok other than copying the contents of a successful search.

Save
This button saves the item in the bottom box under the name displayed in
the top box.

Delete
This button deletes the item whose entire name is displayed above the top
box (not necessarily what is written in the box, since name recognition is
gradual), from PassLok’s local directory. This is irreversible and there is no
confirming dialog, so be careful.

Reset (advanced)
This button does a similar thing to the Delete button, but rather than
deleting the complete item, it only deletes the secret information pertaining
to PFS mode operation and other settings. This is useful if a PFS conversation
goes out of sync and must be restarted.

If a List is displayed in the bottom box, clicking this button instead resets the
current temporary List, but does not affect permanent storage. This is useful
when one is editing a List or making a new one.

List (advanced)
Clicking this button adds the contents of the bottom box to the current
temporary List, removing any duplicates (case sensitive). If the bottom box is
empty the current List is displayed instead. If what is displayed in the bottom
box is an item from the local directory, clicking List adds its full name to the
current List, rather than the item itself.

This is useful for making a List, which will be used for locking messages for
multiple recipients. To save the List to the local directory, you must first write
a name for it in the top box, then click List to display the List in the bottom
box, and then click Save.

All (advanced)
When this button is clicked, the complete local directory is displayed in the
bottom box. The format is as follows: name of the item followed by a colon,
the item itself (encrypted with the secret Key) on the following line,
additional lines containing additional (encrypted) data, blank line before the
next item. Lines are indented for display purposes but this has no effect on
the parsing.

 32

The main use of this button is making sure that a particular item exists in the
local directory, since it is not necessary to know its name beforehand. It can
also be used to edit the local directory in large chunks. The Move button
implements a method for copying the entire local directory so it can be used
in a different device.

Merge (advanced)
When you click this button, the contents of the bottom box are merged into
the local directory provided it is formatted correctly, as described for the All
button.

If the bottom box contains a Lock when this button is pressed, it will be
combined with whatever single-line item is on the Main tab, to make into a
new Lock, which appears in in both boxes. The same thing happens if the
Main tab contains a Lock instead, and the bottom box contains a single-line
item other than a Lock. This is a manual implementation of the Diffie-
Hellman key exchange algorithm, which is at the core of many PassLok
functions.

The following are the buttons on the General Directory interface, which is actually a
page separate from the PassLok code:

Find
When this button is pressed, the email written in the top box is searched in
the general directory, and the Lock corresponding to it (plus a video URL, if
there is one) is displayed in the lower box. Typing Enter after the email
address has the same effect.

Post
A user can put his/her Lock in the general directory by writing his/her email
address in the top box, the Lock in the lower box (with an optional video URL
on the line below it), and clicking this button. The process is not completed
until the user clicks on a link contained in an email, which the directory sends
to the given address.

Play
When a Lock in the directory has a video URL attached to it, clicking this
button opens a new tab where the video is played.

Invite
By means of this button, a user can send an email preformatted with a set of
instructions for downloading PassLok, making a Lock, and putting it in the
directory, to the address in the top box. The email is sent from the user’s
own email account.

 33

Remove
This button is similar to the Post button, but rather than adding a Lock or
updating it, confirming the email that follows deletes all traces of the email
and its Lock from the general directory.

 34

Advanced features
PassLok goes beyond simple locking/unlocking. This section presents some features
that, though maybe not used by everyone at first, may be important at some point.

Short locked messages
Both Anonymous and Key-locked messages are at least 250 characters long, which
wouldn’t fit in a cellular text message (SMS), which is limited to 160 characters. PassLok
has a special mode for situations when you want the locked message to fit within an
SMS, which is invoked by clicking the Short mode checkbox in the Options tab. Because
of the length limitation, the size of the text that can be locked is also limited. Another
constraint is that only one recipient can be selected.

In order to fit as much text as possible, the locked message will have no tags. You can
tell what it is, however, because the resulting gibberish is exactly 160 characters long.
Here’s what you do to lock a message in this mode:

1. Check the Short mode checkbox in the Options tab (Advanced interface).

2. Write or paste your message in the Main tab. Message length is limited to 94 ASCII
characters if locking with a shared Key or with a Lock in signed mode, 62 if locking with a
Lock in anonymous mode, 35 in PFS and read-once modes. Non-ASCII characters use 6
spaces each, so avoid them if you can. Any text beyond the limit will be lost.

3. You will need to have selected the recipient’s Lock or shared Key on the Main tab, or
entered it without saving by clicking the Edit button and putting it in the bottom box of
the new dialog, as described above. After this is done, you click the Lock/Unlock button.
The locked message will replace the original message. Copy it and paste it into your
communications program.

4. If you are using a smartphone, the locked text will be selected and ready to be copied
to the clipboard. If you want to send it using the texting app, copy it, and then click the
SMS button near the bottom of the screen (visible in the Advanced interface), which will
open the texting app. Now you only have to type in the recipient and paste in the locked
message.

If you receive a 160-character long piece of gibberish, which likely is a short locked
message, here’s what you do to unlock it:

1. Paste the locked message into the Main tab. It is okay if it is broken up by spaces,
carriage returns, and special characters. If it was locked with a shared Key, you need to
select or write that Key as we saw earlier.

2. Then click the Lock/Unlock button. The unlocked message will replace the locked
message.

 35

Be aware that the length of the message is very limited in this mode. If you want to send
something long by SMS, one way to get around this limitation is to store it as a file in
one of many anonymous cloud storage services, get the short URL to the file, and send
that, locked, by SMS.

Signed messages: mss
Recipients cannot be sure of who has locked an Anonymous mode message. Key-locked
messages do provide authentication about the sender, for a shared Key is needed in
order to do the locking, but this means that the shared Key has been agreed to
beforehand or a secure channel exists to transmit it (in which case, why not send the
message that way, too?).

A way to authenticate the source, similar to how PGP and other programs do it, is to
first sign the plain message with your secret Key (signing is explained below), and then
lock the result with the recipient’s Lock. When the recipient gets the locked message,
he/she will unlock it first using his/her secret Key, and then see the signature, which
then he/she can verify using your Lock. If it verifies, that means the message comes
from you, since you only have the Key that was used to make the signature.

PassLok has a way to do this in one step, and that is using the Signed locking mode. In
this mode, the message is locked with a special shared Key that derives from both the
sender’s and the recipient’s secret Keys, and which does not need to be exchanged
beforehand. Locking is done exactly as in the anonymous mode, except that you must
set the locking mode on the Options tab as “Signed” before clicking Lock/Unlock.
Unlocking is slightly more cumbersome, since you must select the recipient’s Lock on
the directory (or enter it via the Edit button) before clicking Lock/Unlock. There is no
need to set the mode when unlocking. PassLok will alert you that you need to supply the
sender’s Lock if you forget to do so.

No information about the sender is stored within the message, but hopefully the
recipient knows the source and is able to obtain the appropriate Lock (there’s always
the General Directory). The message is unlocked only if the correct sender’s Lock is
used, thus authenticating the sender without the need for a digital signature.

Signatures and seals
Making digital signatures is rather backward from locking. Things are locked with a Lock
and unlocked with the matching Key. On the other hand, things are signed or sealed
with a Key, and then that signature or seal is verified with the matching Lock.

If you think about it for a moment, you’ll see that it makes sense. Signing should only be
possible for one person, while it should be possible for everyone else in the world to
verify that the signature was made by that one person. Hence one needs a Key, which is
secret, to make a signature, and the matching Lock, which is publicly available and

 36

matches the Key uniquely, to verify it. This process is called “digital signature” in
specialized jargon.

One more thing is different between signing and locking, and this is that the signed text
does not turn into gibberish. Rather, the signature is a separate piece of gibberish with
PL**sig tags at either end (again, ** is the version number). The text itself remains
perfectly readable. If one wants to lock it, it can always be done after that, either with a
Lock or a shared Key.

Applying a seal, on the other hand, does garble the text so it appears as if it has been
locked. It is NOT LOCKED, however, in the sense that only those individuals possessing
the correct Keys can unlock it. A sealed item can be unsealed by anyone in the world, so
long as this person possesses the sealer’s Lock, which is supposed to be public. If the
correct Lock is used, then the original text is recovered and a further message
announces that the seal has been verified. PassLok seals are analogous to old-fashioned
wax seals, which don’t really prevent anyone from opening a scroll, but rather from
tampering with its contents.

To verify that the signed text has indeed been signed with someone’s secret Key, it is
necessary to maintain the original text without any modifications, as well as the
signature. Any changes made to the text, even if it is only a space somewhere, will cause
the verification to fail. The signature itself is a little more resilient and admits to be
broken up and lose its tags, but obviously if some of it is missing or corrupted the
verification will fail, too. Seals are more resistant to accidental changes that might have
been introduced, for instance, by copying the text into an email or word-processor
document that has different formatting from the original, so they will still be verified if
this has happened.

Putting a signature on a text.
Signing is the default mode, so to make a signature write or paste the text to be signed
into the Main tab and click the Sign/Verify button. A signature matching the text and
the key will be appended at the end of the text in the main box. Copy it and use it as
appropriate. If you click Email, the text with its signature will be placed into an email
using the default program. It is okay to strip the tags up to the "=" sign, but not
recommended. PassLok will omit the tags if the no Tags checkbox is checked prior to
signing. It is also okay to split the sign with spaces, and punctuation other than line
returns or = + or /.

Verifying a signature
The process for verifying a signature affixed at the end of a text is this:
1. If the Lock of the person who allegedly made the signature is in your directory, select
its name on the list. Otherwise, click the Edit button and then paste that Lock into the
bottom box of the dialog that appears, then go back.

 37

2. Write or paste the text with its signature appended at the end into the Main tab. It is
okay if the signature is broken up by spaces and special characters other than = + or / or
is missing its tags up to the "=", but it should not be broken by carriage returns. Then
click the Sign/Verify button. A message near the top will say whether or not the
signature for that text has been verified.

In addition to serving as a digital sort of signature, this process can be useful for assuring
the recipient of who locked a message in anonymous mode. This is a very common use
of digital signatures in programs like PGP, where the text is first signed, then encrypted.
PassLok, however, has a better way to identify the sender, which is explained in the
Advanced section.

Putting a seal on a text
Since simply attaching a signature is the default mode, you must first select this mode
by going to the Options tab and checking the Seal radio button (Attached will uncheck).
Then write or paste the text to be signed into the Main tab and click the Sign/Verify
button. The text will be replaced by its sealed counterpart. Copy it and use it as
appropriate. If you click Email, the sealed text will be placed into an email using the
default program. It is okay to strip the tags up to the "=" sign, but not recommended.
PassLok will omit the tags if the no Tags checkbox is checked prior to signing. It is also
okay to split the sign with spaces, and punctuation other than line returns or = + or /.

Unsealing and verifying a sealed text
This is the process for unsealing a sealed text, and thereby verifying its origin:
1. If the Lock of the person who allegedly made the signature is in your directory, select
its name on the list. Otherwise, click the Edit button and then paste that Lock into the
bottom box of the dialog that appears, then go back.

2. Write or paste the text with its signature appended at the end into the Main tab. It is
okay if the signature is broken up by spaces and special characters other than = + or / or
is missing its tags up to the "=", but it should not be broken by carriage returns. Then
click the Sign/Verify button. A message near the top will say whether or not the seal has
been verified. If verified, the sealed text will be replaced by the original. There is no
need to tell PassLok that this was a sealed text, rather than a signature.

Using fake text
PassLok can produce very secure locked messages, but it is obvious to anyone who looks
at them, including scanning bots, that they are not plain text. This can alert an enemy
that an encrypted communication is taking place, which might lead to unpleasantness.

To help with this problem, PassLok includes a fake text encoder, which uses words taken
from a cover text in order to produce output that looks like normal text, but still

encodes the original. Those functions are available after clicking the ▼ button on the
Main tab. Here’s how it works:

 38

To convert a PassLok item (Lock, locked message, etc.) into fake text:
1) Put the item to be converted into fake text into the Main tab. Since PassLok tags,

which always contain the same characters, will lead to the same set of words at the
start and end, you may want to remove those tags before making the fake text. This
is achieved by having the No Tags checkbox checked before creating the item. Most
functions in PassLok work even if the tags are missing.

2) Click the ▼ button. Now you may want to change the cover text using the process
described in the next item, before you do the actual encoding.

3) Go to the Options tab and select the type of text hiding you want. Letters (default)
replaces all spaces and some characters of the cover text with different, but
identical-looking versions (such as Cyrillic “A” instead of Latin “A”), in order to
encode the original message; the result looks identical to the cover text. Sentences
replaces every character in the original with a complete sentence from the cover
text; the information is contained in the sentence length plus the punctuation sign
at the end. Words takes every character and replaces it with two words from the
cover text, resulting in gibberish text. Spaces encodes the text within the spaces of
the cover text, using seven words per character; this results in a much longer
output, but the result is essentially the same as the cover text. If everything goes
well, the contents of the main box are converted into fake text and displayed in the
box, replacing the previous contents. If the cover text is insufficient in some way, a
warning will be displayed.

4) You can now email the fake text, which to an email scanner will be nearly
indistinguishable from real text. You can merge or split lines without changing the
encoded material. Do not alter any spaces within the encoded text, however, if it
was encoded as Spaces, or punctuation if it was encoded as Sentences. The output
of Letters encoding often will end in mid-sentence; you should complete the last
sentence so it makes sense to areader.

To retrieve the original PassLok item from fake text:
1) Put the fake text in the Main tab.

2) Click the ▼ button.
3) Click the Text hide button. PassLok will detect the method used and convert the

fake text in the box back into the original item, replacing the fake text, regardless of
whether or not the recipient has loaded the same cover text.

Now, PassLok’s default cover text is a piece of English text (taken from the GNU 3.0
license). If the context of the channel where you are going to place the item is very
different, it might stand out and be detected by a scanner. It will also be detected if a
different language is expected. Can PassLok get around this problem?

Simple: replace the default cover text with a different one. Stored cover texts are

displayed by name at the top of the Main tab as soon as the ▼ button is pressed; simply

 39

click on the one you want to use. If the desired cover text has not been stored, follow
these steps:
1) Copy a sufficiently long text (it must have words of at least nine different lengths,

for the Words method, or 7 times the number of characters to be encoded, for the
Spaces method, or 12 different sentence lengths, for the Sentences method).

2) Click the Edit button and paste the text in the lower box of the dialog that appears,
then return to the Main tab. If you want to keep the cover text for future use, write
a name for it in the upper box and click the Save button before you leave the
dialog.

Cover texts in any language compatible with UTF8 encoding can be used, including
Chinese, Japanese, Arabic, etc. Be aware that the Words encoding only capitalizes words
if they follow a period. If you are writing in German or some other language with more
frequent capitalization, the result may not be satisfactory with the Words method.

Hiding stuff inside images
PassLok also includes two methods for hiding its output within images, so it is invisible
to human eyes; one outputs in PNG format, the other in the more common (albeit lower
capacity) JPG format. It does so by replacing the least significant image data with the
material to be hidden. This function is accessed by clicking the Image hide button in the
Advanced interface.

Let’s say PassLok has locked a message, which you now wish to hide within an image.

Click the ▼ button, followed by the Image hide button. Then click the Choose File
button (the label uses slightly different words on different browsers) in the new screen
that appears. A dialog will open, asking you to select an image file to hide the stuff into.
Find an image in jpg, bmp, gif, or png format and click OK, and the image will load. If you
now click either of the PNG hide of JPG hide buttons, the locked message will be hidden
into the image, which will still look the same to human eyes. To save to disk, right-click
on it and select Save.

The process to retrieve the information hidden inside an image is similar. First you need
to load the image as described above, and then you need to press the Reveal button. If
the image contains a hidden PassLok item in one of the two formats available, it will be
extracted and placed in the Main tab. Whether or not the process succeeds, a message
is displayed telling you what is happening.

Now, hiding an item inside an image, as hiding within words, provides no real security,
so PassLok will refuse to do it unless what you are hiding is already locked. PassLok can
certainly hide plaintext inside images, but it has been coded to accept only locked items
in order to protect users who might think that simple hiding provides enough security.

 40

You also must be aware that mobile operating systems, and very specially iOS, tend to
modify images as they load. This erases whatever information has been hidden in them,
so that the image hide process only works for hiding an item, but not for extracting an
item hidden in an image. Likewise, handling a modified image is severely restricted, and
often the only option available is saving it to camera roll after a long press, and from
there the image can be emailed or shared by other means.

Perfect Forward Secrecy (msp) and Read-once (mso) locking

There are two additional locking modes, and these are PFS mode, where PFS is short for
“Perfect Forward Secrecy,” and Read-once mode. PFS secrecy is achieved when nobody
can read a locked message (including the sender or the recipient) after the next
message is been delivered. The message self-destructs after a while, so to speak. In
Read-once mode, self-destruction happens the moment a message is successfully
unlocked.

This is a desirable feature when one foresees that either the sender’s or the recipient’s
secret Key might be compromised at some time in the future. If this happens, an enemy
will be able to read all the messages that were locked in the other modes, which he had
been storing, but the messages locked in PFS and Read-once mode will remain
unreadable.

How does PassLok achieve perfect forward secrecy? By changing the secret Key used to
lock the message every time a new message is locked. The Lock matching that
temporary Key is sent along with the message, encrypted, so the recipient can unlock it.
He/she will be able to do so if he/she still has the temporary Key used to lock the last
message from his/her side.

To initiate or continue a conversation like this, which typically involves a number of
messages sent back and forth, either in PFS or Read-once mode interchangeably, you do
the following:

1. Select the recipients on the Main tab. If there is only one, you can also go to the
directory Edit dialog and start typing his/her name in the top box until the full name
appears along with the corresponding Lock or shared Key. Forward secrecy modes
involve storing encrypted data for each recipient, so they each must have an entry on
the local directory. If you want to make sure that the conversation starts from scratch,
perhaps because the conversation has somehow gone out of sync, you can do this by
clicking the Reset button when the recipient’s name is displayed.

2. Now you go to the Options tab and select the PFS or Read-once radio button.

3. Back in the Main tab, you enter the message, and click Lock/Unlock. If all goes well,
the plain message is replaced by a locked message bracketed by PL**msp of PL**mso

 41

tags. As you send it to the intended recipients, you may want to alert them if you have
reset the temporary data so they can do the same on their end.

If you change your mind about what you say in the message before you actually send it,
you can still write and lock something else if you are using PFS mode; the conversation
won’t go out of sync. If you used Read-once mode, however, locking a new message
before a message from the other side is unlocked would throw the conversation out of
sync so that no messages could be unlocked after that. Because of this, PassLok will
refuse to do it and instead will instruct you to use PFS mode (or Anonymous or Signed
modes, for that matter) if you attempt to lock in Read-once mode twice.

To unlock a PFS or Read-once message you have received, you do the following:

1. Select the sender’s name on the Main tab, or click Edit and start typing the name in
the top box until the full name appears. If the temporary data need to be reset, you may
do it at this point by clicking the Reset button in the directory Edit dialog.

2. PassLok knows it is a PFS or Read-once message even if you don’t select the radio
buttons, so the only thing you need to do now is put the message on the Main tab and
click Lock/Unlock. If successful, the unlocked message will replace the locked message.

The moment you lock a new message in PFS mode, a new temporary Key is made and
the previous one is overwritten. This means that you won’t be able to read a previously
locked message. The situation is even more drastic in Read-once mode. In this case the
Lock involved in the message is overwritten immediately after a successful unlock, so it
is not possible to unlock a message twice.

When a message is locked for several recipients, the data pertaining to each recipient is
handled separately, so you can continue conversations with each separate recipient
after a joint message has been made. Forward secrecy conversations work best if each
message sent is followed by a reply from the other side (this is strictly necessary in
Read-once mode), although it is also possible to maintain an uneven exchange, where
one correspondent sends several messages without waiting for a reply, if no Read-once
messages are involved.

PassLok is probably the only program out there that achieves perfect forward secrecy
for asynchronous communications such as email. Typically, forward secrecy-enabled
programs such as CryptoCat (a JavaScript implementation of the “Off The Record”
protocol) require that the participants in a conversation be online at the same time, so
the server can distribute temporary keys to them as needed. PassLok also has a real-
time chat feature, but security is handled in a completely different way.

 42

Decoy mode
Now you may say, “All this business of locking and unlocking is very cute, but the world
isn’t so cute. The moment they see you’re using cryptography, someone’s going to come
knocking on your door to ask you for your secret Key, first nicely, then maybe not so
nicely. And if you don’t talk, maybe one of your friends will.” What’s to be done in this
unfortunately not-so-rare scenario, commonly known as “rubberhose attack” in honor
of the instrument traditionally used to extract the Key?

This is why PassLok regular locked items include an extra container for information that
might or might not be there at all. There is no way to tell that hidden data is indeed
present. Trying to extract the presumed hidden information without the proper Key will
fail in exactly the same way as if no hidden data exists.

The result is called “plausible deniability.” Since there is no way to tell whether or not
there is a hidden message, you or your friend on the other side can claim that indeed
there is no hidden message after supplying the secret or shared Key that they
demanded. Those trying to find what you’re up to may be disappointed by what they
see in your now unlocked messages and suspect there is more, but they cannot know
for sure that there is more. At some point, it becomes unreasonable to keep bothering
you after you’ve given them what they asked, and chances are they’ll let you go.

So here’s how to use PassLok’s Decoy mode:

1. Check the Decoy mode checkbox on the Options tab.

2. Follow the instructions for any type of regular locking (not Short mode). If Decoy
mode is checked, a popup will ask for the hidden message and the Decoy Lock or shared
Key. The hidden message is limited to 59 ASCII characters. Non-ASCII characters use 6
spaces each, so avoid them if you can. Any text beyond the limit will be lost.

3. After clicking Lock/Unlock, the resulting item containing both the main text and the
hidden text will appear on the Main tab, replacing the original text. As with regular
locked messages, it is okay to strip the tags up to the "=" sign. PassLok will do this
automatically if the no Tags checkbox is checked prior to locking. It is also okay to split
the locked message with spaces, line returns, and punctuation other than = + or /

When the recipient gets the message, he/she can unlock it in the usual way, in which
case it behaves no differently from a message that was not locked in Decoy mode or,
suspecting there is more than meets the eye, checks the Decoy box first, in order to
reveal the hidden message. Here’s the process:

1. Check the Decoy mode checkbox on the Options tab.

 43

2. Follow the instructions for any locking mode. If Decoy mode is checked, a popup will
ask for a Decoy key.

3. Write or paste into the popup box the special Key for the hidden message. If this is
not a shared Key, uncheck the Shared checkbox (since the very existence of the message
is undetectable, PassLok cannot determine automatically which kind of Key you are
using). Then click OK. The hidden message, if it exists, will appear in the message area of
the Main tab even if the main unlocking fails or the signature is not verified. The main
message will be displayed in the normal way if the main unlocking is successful.

Everything that was said above about the strength of a secret or shared Key still applies
(perhaps even more) to a Decoy Key. If you are using a Lock for the hidden message, it is
probably best that this be a Lock that has not been made public.

Even though space for the hidden message is quite limited, there are ways to expand it
to include a large item. For instance, the hidden message could contain the URL (and
password, if needed) of a compressed and encrypted file, which has been uploaded to
an anonymous cloud service.

Locking with Lists

PassLok can lock an item for multiple recipients, who presumably use different secret
Keys, as easily as for a single recipient. Other encryption programs, such as PGP, offer
the possibility to encrypt for multiple recipients, but PassLok has a few advantages. First,
you can have recipients with whom you share a Key, and recipients for whom you have
a Lock, and include both types of locking within the same locked message. You select
the recipients directly on the Main tab or, if you want to keep complete stealth and not
even use the directory, you only need to enter the recipients’ Locks or shared Keys, one
per line, on the bottom box of the directory Edit dialog.

Then, PassLok has Lists including several recipients (more on this later) that can be
saved into the local directory, so locking for multiple recipients takes the same effort as
locking for a single recipient, once you've made a List.

The underlying process is this: PassLok comes up with a temporary shared Key just for
the message, uses it to lock the message, and then locks this Key for each of the
recipients and sends the locked Keys along with the locked message. When a recipient
gets the package, he/she first needs to find the message Key that has been locked for
him/her. Now, there may be several of those, each locked for a different recipient, so
how does PassLok identify the right one? Because the locking process adds an
identifying tag to each locked Key. This should be done in a way that only the recipient
can succeed at identifying the tag, or the locked message would be leaking information
about the intended recipients to whomever happens to intercept it.

 44

So the identifying tag for each locked Key is based on information that only the sender
and each recipient know. If they are using a shared Key, the tag is based on that shared
Key after it is encrypted using itself as Key, in a way that is different for each message. If
a Lock is used, then the tag is based on that Lock, encrypted , for signed, PDF, or Read-
Once messages with the permanent shared Key made by combining the sender’s Key
and each recipient’s Lock; for anonymous messages, the Lock is encrypted with the
result of combining each recipient’s Lock and the dummy Key used for the message,
which is the same for all recipients and is sent in plaintext along with the rest of the
message.

After each recipient computes this id tag information, he/she then looks for it in the
locked message. Once it is found, the data immediately following it is the encrypted
message Key, which then can be decrypted using whatever mode was selected by the
sender, which is transmitted via a special character at the start of the locked message.
Note that only the recipient can find this tag, since it is encrypted in a way that only
he/she (and possibly the sender) can decrypt. Anyone intercepting the message cannot
find out who the intended recipients are, even if he/she has all the Locks belonging to
those recipients. An intended recipient can only find out if he/she is on the list; the
identities of the other recipients remain unknown as far as any hint contained in the
locked message.

Sounds complicated? That's because it is meant to be complicated so it is secure, but
PassLok makes it easy for the user, in two ways. The first is the directory on the Main
tab. The sender only needs to select the recipients (several can be selected), and click
Lock/Unlock exactly as for just one recipient. On the recipient’s side, there is no need to
select anything once the correct secret Key has been entered, at least for anonymous
messages. The sender must be identified for the other types, but this simply involves
one click on the directory.

The second labor-saving device is Lists. PassLok can handle multiple recipients as a unit,
by making a list of their names (or their individual Locks or shared Keys), one per line,
and saving it under a new name. The List name appears on the Main tab directory like
any other name, except that it is highlighted by dashes so the user knows it is actually a
List of several recipients. When you click on a List name, the message area tells you the
names contained on the List. PassLok scans for duplicates automatically, so that you can
click on Lists (or individual recipients) that may have lines in common, but only one
instance of each recipient will be considered.

There is a special button to help you make Lists of multiple recipients. It is labeled, not
surprisingly, List, and it is visible on the directory Edit dialog when the Advanced
interface is selected. Clicking this button adds the item or items currently being
displayed on the bottom box to a temporary List, which is recalled when the List button
is clicked with nothing on the box. Clicking the Reset button erases this temporary List,
in case a mistake has been made. If the new item is itself a List, containing several lines,

 45

the List button merges them into the temporary List, eliminating any duplicates and
placing them in alphabetical order. To save the temporary List into the local directory,
give it a name in the top box, then click List so the temporary List is displayed in the
bottom box, and then click Save. If you do not save the temporary List, it goes away
when you close PassLok.

Random Keys
Security experts recommend using long random Keys rather than stuff that you come up
with. This makes them impossible to crack by brute force or dictionary attacks. The
problem is that they are also impossible to remember and, if users write them down,
the likelihood that they’ll be lost or compromised increases so much that they are not
worth it anymore.

But there are exceptions. This is why PassLok helps you to generate a random Key,
should you ever need one. Just open the directory Edit dialog and click Save with
nothing in the bottom box. The box will fill with a 42-character random string made of
base64 characters, which is way more secure than you’ll ever need. PassLok will store it
for you in the local directory if you supply a name for it in the top box before you click
Save (the bottom box must still be empty). As usual, you will need to have written your
secret Key in its proper box before you can save anything.

Another place where random strings appear is as tokens to be used in conjunction with
your secret Key. This is done by clicking the Random button in the New User wizard
when you get to this optional step, or a similar button in the Change Email/token dialog
called from the Options tab. This makes your Lock essentially impossible to crack no
matter how bad your Key is. The random token is stored in your device, encrypted
under your Key, so you won’t need to enter it again. The catch is that you’ll be tied to
that device from then on, since you wouldn’t have the token stored in other devices. To
help you cope with this, PassLok can export it as a special locked item (along with the
rest of your settings) if you click any of the Backup/Remove buttons at the bottom of
the Options tab. To use your random token on a new device, set up a new user with the
same name and secret Key (but obviously not the same token), place the backup item
on the Main tab, and click Lock/Unlock.

In the Chrome app version of PassLok, the random token is automatically backed up to
the Google servers, so that you can go to a computer that you have never used before,
log into Chrome with your Google ID, load PassLok, and make a new user having the
same name and secret Key as before (no need to supply the correct email or random
token). The backed-up settings, including the random token if there is one, will be
downloaded and applied at this point, and you’ll find yourself with your entire local
directory available to you. The backed-up items (except Locks, by default) are stored on
the Google servers only after they are encrypted with your Key and user name, so that
nobody can get them even if they hack into those servers.

 46

Splitting and joining items
There is a very clever mathematical trick that allows PassLok to split a piece of text (or a
file encoded as text) into a collection of parts, each of which by themselves are
completely useless. The algorithm is called the Shamir Secret Sharing Scheme, and it is
based on the properties of polynomials. To split a text, get the extra set of buttons on
the Main tab and then click Split/Join while the text is displayed in the box. A popup will
ask for the total number of parts to be made, and the minimum number of parts that
will be required to reconstruct the text. The parts will then appear on separate lines in
the main box. You can create from 2 up to 255 parts.

Parts can be readily identified by the “PL**p^^^” tags (** is the version number and ^^^
is the number of parts needed to reconstruct the original) bracketing the actual data. As
usual, it is all right to strip the tags up to, and including, the “=” sign, since the tags are
meant to identify the item and provide some protection against accidental corruption. If
the original text is shorter than 5 characters, you will need to strip the tags in order to
reconstruct the text.

The process to rejoin the parts is similar: place the parts on separate lines in the main
box, each part occupying a single logical line (which might wrap inside the box), display
the extra set of buttons, and click Split/Join. If the parts are from the same set and
there are enough of them, the original text will appear in the box. If something is wrong,
PassLok will tell you with a message.

There are a number of situations where you may want to split something into several
parts. For instance:

 You want to use a high-security random Key, but since it is so hard to recall you
feel forced to write it down somewhere, which is a security no-no. But if you split
the Key first and then store the parts at different locations (which might be
different files within the same computer), the risk of compromise is greatly
reduced. When you need the Key, you retrieve the parts from their storage
locations and then reconstruct the original Key. You may want to make one or
two spares in case you forget the location of some of the parts.

 You want to send locked messages that can be read by several people, but for
some reason you don’t want to make a multiple-locked message. In this case you
create a random Key and split it into as many parts as recipients plus one, with
two being required to reconstruct the original. You send each recipient one of
the parts (locked with their personal Locks so no one else can get them), and the
remaining part is sent in the open, along with the message locked with the full
random Key. The recipients can regenerate that Key by joining the extra part that
you sent and the part they each have, and then they unlock the message.

 You want to force two or more people to cooperate, or at least talk to each
other digitally. One way to do this is to lock something important with a shared
Key that gets split into parts, which you send separately to those individuals. The

 47

only way they can retrieve the important item is by pooling their Key parts
together in order to reproduce the locking Key.

 Splitting can also be used as an alternative to locking with a Key, since the string
split into parts can be very long. To do this, place the text to be locked in the box
and generate two parts. Since both parts must be joined to retrieve the text, one
of them can be kept secret and used as a Key while the other is sent by insecure
channels.

 If you are the Coca-Cola Company and want to embrace the XXI century, make a
Word file containing the secret formula for Coke, load it into PassLok using the
Choose File button, and then split it with the Split/Join button. Give different
parts to different people for safekeeping.

Making sure PassLok is genuine
The biggest concern regarding the actual security of PassLok is the integrity of its code.
If an attacker manages to intercept the html webpage before it comes to your device,
he/she/it could replace it with one that outwardly looks and behaves the same, but
which uses weaker encryption that can be broken without difficulty. There are countless
ways in which this can be done. This is a real problem, which is shared by all security
programs running on a browser, or even directly on the computer.

If you got PassLok as a packaged app from the Chrome Web store, the code has been
signed as it was uploaded to the store, so that the web browser (Chrome) will check that
the signature matches the actual code before it accepts it. In this case, an attacker
wanting to tamper with the code would have to make Google issue a fake certificate so
that Chrome would accept a counterfeit app. Probably quite difficult for a regular
hacker, not so much for a government agency. So you can feel secure about Chrome app
version of PassLok so long as you trust Google. The same can be said about the versions
of PassLok for Android, which is distributed from the Google Play store, and for iOS,
which is vouched for by the Apple app store.

But can be done about the web version of PassLok? First of all, be paranoid and load the
web version of PassLok only by SSL/TLS. That’s the “https” at the start of the page
address. This means that the PassLok page only leaves the server after an encrypted
communication has been established between it and the browser running on your
device. An attacker wishing to switch a tampered version with the genuine one would
have to spoof the server’s digital certificate, which is quite difficult for an individual
(though apparently not for the NSA and similar entities). At the time of this writing, the
official PassLok source is https://passlok.com, which also hosts the General Directory.
Then, there are the mirrors from where you can get PassLok. The most secure one,
because it is located outside of US territory, is https://www.autistici.org/passlok.
Another mirror, which is located in US territory so it’s not as secure from interference, is
https://passlok.site44.com. Finally, there is a Github page containing the code at:
https://github.com/fruiz500/passlok, which also displays it in functional form as
https://fruiz500.github.io/passlok.

https://passlok.com/
https://www.autistici.org/passlok
https://passlok.site44.com/
https://github.com/fruiz500/passlok
https://fruiz500.github.io/passlok

 48

There is still a chance that someone might gain access to the PassLok source and change
it without my knowledge. How can you tell if that happens? Because I’m publishing a
hash of the genuine source in an entirely different location and by a different, harder to
fake, method. Here’s what you do to check it:

1. Load PassLok from one of the authorized sources listed above, or from storage (local
or cloud) if previously saved as described in step 3b.

2. Direct your browser to "view source". Each browser does this differently, but most
non-mobile browsers have this capability. Typically, you load the source on a separate
tab by typing CTRL-u (Windows) or option-cmd-u (OSX). On the page displaying the
source, select all (CTRL-a or cmd-a), then copy to clipboard (CTRL-c or cmd-c). You can
also save the page to hard disk at this point. DO NOT save the running code using the
"save" command from the browser menu, since this command modifies the source
code before saving it; use the “save” command only on the source displayed by the
method above.

3. Now you have to take the SHA256 hash of the code on the clipboard using a program
different from PassLok. A hash is a mathematical operation that converts a (usually long)
piece of data into a fixed-length random-looking string, which is a sort of fingerprint of
the original. An important property is that the process is one-way: you cannot get the
original from the hash. The probability that two given pieces of data will produce the
same hash string is negligible. Popular hash algorithms are MD5, SHA1 and, more
recently, SHA256. You have several options:

a. Use an online utility where you paste the text on a box and click a button. You
must make sure that pasting does not add extra space at the top of the file,
which would affect the result. Online-convert (http://hash.online-
convert.com/sha256-generator), fileformat.info
(http://www.fileformat.info/tool/hash.htm) and freeformatter.com
(http://www.freeformatter.com/sha256-generator.html) have worked well in my
tests.

b. Save the source to a file as shown above, and then use a local program or
utility to take the SHA256 of the file (built into the OS in Linux and OSX, not so in
Windows). PassLok does have the ability to save anything contained on the Main
tab to a text file by clicking the Save button in the Options tab, but be aware of
the danger that this function might have been tampered with. Then obtain the
SHA256 of this file using the local program.

4. Currently, the SHA256 for the most recent version of PassLok is published in five
places. These are:

http://hash.online-convert.com/sha256-generator
http://hash.online-convert.com/sha256-generator
http://www.fileformat.info/tool/hash.htm
http://www.freeformatter.com/sha256-generator.html

 49

1. The “Get PassLok” section of PassLok’s informational website at
http://passlok.weebly.com.

2. Within the description of the Chrome packaged app, at this location:
https://chrome.google.com/webstore/detail/passlok-
privacy/epcchpdljafmfegifkigklfcmkphfmbh .

3. Within the description of the Android app:
https://play.google.com/store/apps/details?id=com.fruiz500.passlok

4. Within the description of the iOS app: https://itunes.apple.com/us/app/passlok-
privacy/id879861603?mt=8&uo=4

5. At my blog, prgomez.com: https://prgomez.com/passlokcurrent/

These are all different from the actual servers of the PassLok webpage for one
important reason: whoever manages to tamper with the code on the server can also
tamper with the published hash if it is served from the same location. Hence, the servers
are different.

Now, I’m sure you realize that the pages containing the SHA256, although different from
those containing the code, can still be hacked in order to place there a hash that would
match counterfeit code. It would mean hacking into several servers but it would still be
possible. Sure, but can that individual or corporate entity change the YouTube video of
yours truly reading the genuine ID, which is always linked right below the hash? It’s not
like my face is as recognizable as Michael Jackson’s (thank God), but this is bound to be
pretty difficult to tamper with no matter what.

The process can be improved, to be sure, but hopefully this will allow most users to rest
at ease and use PassLok with a minimum assurance that it is safe from tampering. Not
that the code itself has no security flaws. This is for experts to test and discover, which is
greatly facilitated by being able to read the code.

Lock authentication via text or email
If you cannot make contact with the other person through a rich channel such as voice
or video, you’re going to have to start using somebody’s Lock without knowing for sure
that the Lock is genuine. Trust will build up gradually as the messages sent back and
forth serve to confirm the identity of the participants. But there are ways to
authenticate a Lock with only a few messages traveling back and forth.

The easiest thing to do is to send a message to the presumed Lock owner, including a
question whose answer only the two of you know, and asking him/her to send you
his/her Lock, itself locked with a Key that is the answer to that question. If the answer is
correct, you’ll be able to open the locked message, and thus retrieve the genuine Lock.
An interloper who is watching and perhaps modifying your traffic won’t be able to
unlock a message locked this way, and thus he/she must be content with preventing you
from getting that locked file, in which case you’ll know that whatever Lock you have is
fake.

http://passlok.weebly.com/
https://chrome.google.com/webstore/detail/passlok-privacy/epcchpdljafmfegifkigklfcmkphfmbh
https://chrome.google.com/webstore/detail/passlok-privacy/epcchpdljafmfegifkigklfcmkphfmbh
https://play.google.com/store/apps/details?id=com.fruiz500.passlok
https://itunes.apple.com/us/app/passlok-privacy/id879861603?mt=8&uo=4
https://itunes.apple.com/us/app/passlok-privacy/id879861603?mt=8&uo=4
https://prgomez.com/passlokcurrent/

 50

But this easy way has the problem that the other person’s answer to my question must
be exactly the answer I remember, down to the smallest spelling detail, or the message
won’t unlock. It may also be that, although I know this person quite well (a coworker
comes to mind), I can’t think of any secret that only the two of us would know.
Fortunately, there is another way to authenticate a Lock using a variation on the
“interlock protocol,” which admits some flexibility. It is enough if the participants can
recognize the answers as valid in a more general sense, or just recognize the other
person’s face or voice.

Look, for instance, at this scenario. Alice has obtained Bob’s Lock, but she fears that it
might be counterfeit and someone else might be unlocking the messages she sends to
Bob, reading them, perhaps changing them, and then re-locking them with Bob’s actual
Lock for him to read. So Alice sends Bob this email (which is also included in PassLok’s
help system, should you want to use it):

Dear Bob:
I just obtained your PassLok Lock from (cite source), but I still wonder if it is authentic
since I am unable to view the authenticating video. Therefore, I ask you to help me
authenticate it through the interlock protocol. Here's what I want you to do:

1. Write a message asking me to take a picture or video of myself doing something
of your choice. Lock the message with my Lock, which is appended to this
message, and copy it to a safe place. Then split it in two and send me the first
half only.

2. When I receive your first half, I will also write a message asking you to do
something in a picture or short video. I'll lock that message with your Lock, and
I'll send you half of the locked message first. When you get it, go ahead and send
me the other half of your locked message.

3. When I get your second half, I'll put the two halves together and unlock your
message. Then, following your instructions I'll send you the picture or video right
away, unlocked, along with the second half of my locked request.

4. When you get it, please verify that what I sent conforms to your instructions. If
so, put together the two halves of my locked message to you, unlock it, and send
me what I ask in the message as soon as possible, unlocked as well. Then I'll
know that your Lock is authentic.

Your friend, Alice.

Let’s see how the protocol contained in this email foils Mallory, who is able to intercept
and modify their communications without them knowing anything. He poses as Alice
before Bob, and as Bob before Alice. In this case, Alice does not have Bob’s genuine
Lock, but one that Mallory made in order to impersonate Bob. Likewise, Bob does not
have the Lock that Alice sent in step 1, but one for which Mallory has the Key.

 51

Things begin to go wrong for Mallory at the beginning of step 2. Since Mallory cannot
yet read Alice’s request but nevertheless has to send something to Bob to keep the
exchange going, he must send him a request from “Alice” that likely has nothing to do
with the real Alice’s request. That, or pretend in step 1 that Bob is refusing to go along
with the game, which is not going to do much to reassure Alice.

Mallory will then get the whole request from Bob at the end of step 2, so he will be able
to unlock it, re-lock it, and pass it along to Alice, and then get from her a reply that will
satisfy Bob in step 4. But the damage has been done. Mallory is committed to send Bob
a second half from “Alice” that will match the first half but which most likely does not
contain the request made by the real Alice, or otherwise Bob won’t keep up with the
protocol and Mallory’s cover will be blown. Bob might not discover the ruse at this
point, but it is highly unlikely that his reply, or whatever else Mallory can come up with
to replace it, will satisfy the real Alice’s request. Then she’ll know that someone is in-
between and Bob’s Lock is not authentic.

If now they repeat the process with one new request from either side, but this time with
Alice asking the first question, Bob will also notice that something is wrong. But what if
there is no Mallory, and “Bob’s Lock” was not being used to listen in but was simply
corrupted or mistaken for another Lock? Then Bob simply will be unable to unlock
Alice’s complete request in step 4, and he will alert her of that fact. It is possible that
Mallory could still be watching without attempting to modify the messages passing
through him unless he really has to, but it is unlikely that he could replace Bob’s
announcement that the protocol failed with something that would satisfy Alice, because
at that stage Alice won’t accept anything but a correct reply to her request, or she will
decide that “Bob’s Lock” is bad.

It took some homework and three emails from each side, after which they still don’t
know each other’s authentic Lock (which would be impossible with Mallory changing
everything, anyway), but Alice has avoided being duped by a powerful enemy.

Under the hood: Compression, Data Correction, Variable Key Stretching.
There is some really cool stuff happening as you work with PassLok that don’t involve
any buttons. Let’s talk here about some of them.

Typically, a locked message will be longer than an unlocked one. This is especially true if
it involves non-Latin characters, which the computer internally encodes as a longish
string of binary data (as much as six times longer than a Latin character). To compensate
for this, PassLok includes smart Lempel-Ziv (LZ) compression of plaintext. This algorithm
replaces frequently used strings or characters with shorter codes, resulting in as much
as a 50% reduction in output size. When the plaintext is long, this also translates into
faster processing. An example: the Gutenberg.org version of Shakespeare’s Hamlet
(nearly 180,000 Latin characters long) takes about four seconds to lock or unlock in my

 52

2007-model Dell machine if compression is not used, but barely one second with
compression applied right before the encryption step. The locked item is also less than
half the size.

The “smart” bit about LZ compression is that it isn’t used where it won’t be helpful. One
case is for encoded files, which tend to look fairly random without any compression.
Since compression is based on finding repetitions, random-looking data don’t compress
well. PassLok detects encoded files and skips the compression/decompression steps.

Data correction means that an item may have suffered some sort of corruption and still
remain functional. Without data correction, when text is locked any change in the
locked result will make it impossible to unlock. A similar think happens with a Lock that
is dictated over the phone and copied down with errors: the defective Lock will no
longer match the original Key, so that material locked with it won’t be unlockable. So
how does PassLok implement this wonder?

Two ways: Reed-Solomon algorithm and triple encoding. Triple encoding is the easiest
one to understand, so we’ll cover this first. If instead of sending one copy of a locked
item you send three identical copies, whenever two of them agree we can safely
conclude that the result is correct. This also works for deletions or spurious additions at
any point, so long as two of the copies still agree. Triple encoding is very easy to
implement but, duh, increases the size of the output by a factor of three, so PassLok
makes it optional. It will always detect triple encoding if it is used, but to make triple-
encoded output the user needs to check the Triple checkbox on the Options tab. You
can always obtain the same result by copying the single output, adding a “@@” string
(without the quotes), then a copy of the output, another “@@” string, and then another
copy of the output, leaving no spaces in-between.

Reed-Solomon is the algorithm used in CDs, DVDs and other media in order to deal with
scratches etc. QR codes also use this algorithm. The idea is to add some more data that
identifies any corruption of the original, and even supplies the correct values. PassLok
implements this by adding some more random-looking data before all final tags. The
error-correction data can be identified easily because it is preceded by a “=” character,
just like the tags. It can detect and correct up to 5 wrong or missing characters for every
255 characters of the original, including the error-correction code itself. Error correction
usually takes place when an item is used, but in the case of Locks it happens as soon as a
Lock is entered, meaning that it will appear to change (it loses its tags, for instance)
without the user having clicked any button. This serves as confirmation that the Lock
has been identified as such.

Error correction is based on math not unlike that of the SSSS algorithm (used in the
Split/Join function), and it seems like magic, but it can fail sometimes. If there are more
than 5 errors for a given group of 255 characters, a message will alert the user that the
RS algorithm has failed. Since it is possible that all the errors be in the error-correction

 53

code itself, retrying the function after having deleted the tags (including the error-
correction code, which won’t be used in this case) might do the trick. The RS algorithm
cannot detect whether characters are missing or have been added later, so if this has
happened the process will fail as well. Unfortunately, there is no way to correct for this
if the item is not triple-encoded. Triple-encoding, on the other hand, should handle this
event without any trouble.

Key stretching means that, every time a Key is used in PassLok, what is actually used is
not the Key itself, which might be a simple word and therefore easy to guess by hackers,
but the result of applying a complex mathematical operation to that Key. The result is a
random-looking, fairly long string that would be pretty much impossible to guess by
using dictionaries. Even better, it is harder to do the operation backwards than to try all
possible inputs, so that the operation is effectively one-way. Key stretching has been
used since the beginning of computer-based cryptography, so there are a number of
well-researched standard algorithms. PassLok uses the SCRYPT algorithm, which has the
nice feature that it is hard to run using specialized hardware, which a wealthy hacker
might want to do. This, which might sound at first like a bug, is actually what we want:
we want a long, tedious computation consuming lots of computer time, in order to
make Key-guessing as hard as possible. The actual user will only be running this
computation once, which is usually okay, while a hacker trying to guess the Key will be
running it millions of times.

PassLok goes one step further, and it uses the WiseHash algorithm, combining SCRYPT
with a smart Key strength evaluation function based on a dictionary and true entropy
measurements. This means that weaker Keys, which score lower in the strength-
measuring algorithm, are hit with more spurious computations than stronger Keys. This
is interesting for two reasons. The first is that the user experience is worse for weaker
Keys, thus providing an incentive for him/her to come up with a stronger Key. Although
there is little perceived difference going from a Good to an Excellent to an Overkill Key
(to paraphrase the labels PassLok displays in Basic mode), things get really slow as you
drop down to Medium, to say nothing of Weak and Terrible Keys.

The second reason is that bad Keys remain valid Keys, even as they are penalized. A
hacker trying to guess your Key by making Locks for all strings in the dictionary will be
forced to consume a large amount of computer time mucking through the bad Keys, or
risk missing the easy ones. Add the email/token feature, which means that there is no
such thing as a pre-computed list of Keys and their matching Locks valid for all users
(also called “rainbow table”), and you’ve got an extremely secure way to use Keys that
you can actually remember.

 54

Appendix: A Comparison between PassLok and PGP

This is an article I published on my blog (prgomez.com) some time ago. It is on the long
side and obviously biased, but I couldn’t resist adding it here as an appendix because it
lays out why PassLok might yet succeed where others failed. I have edited a few things
here and there as PassLok has evolved.

Email and chat encryption, certainly very desirable for privacy, has been available for a
long time but very few people use it. In this article, I show why this has happened and
why this is about to change with PassLok, the new privacy app derived from URSA.

Email and chat encryption until today has normally been done using PGP (short for
“pretty good privacy”) or GPG, its open-source cousin. PGP, created by Phil
Zimmermann, was first released in 1991 with the intention of bringing strong encryption
to common folks. Back then, computers were using UNIX, DOS, or an early version of
MacOS as operating system. DES was yet to be cracked. The Advanced Encryption
Standard (AES) winner had not yet been picked. Zimmermann based his program
on IDEA, a contender in the AES contest, adding the RSA method for public key
cryptography. The first version of PGP ran from a DOS command line. It was awesome
and it put Zimmermann in a heap of trouble with the Feds.

There are many good articles on the workings of PGP out there, so I will only describe
the essentials, from which all its subsequent history has derived. The basic steps have
not changed much in the later versions, whether controlled from a command line or a
graphical user interface. What follows is a bit technical but not excessively so. Stay with
me.

The first thing that PGP asks you to do is type some garbage so it can seed its random
number generator, then it makes a pair of private and public keys using the RSA (Rivest-
Shamir-Adleman) algorithm. You cannot design your private or public keys because only
certain sequences of characters are valid keys in RSA. The security of RSA keys is based
on the difficulty of separating two large prime numbers that have been multiplied with
one another. The private key consists essentially of those two numbers, together but
clearly identified, while the public key is essentially the result of multiplying them. You
can always get the public key from the private key, but the reverse operation is much
harder to do. The larger the numbers, the harder it gets. Currently (2015), NIST
recommends using 2048-bit factors for decent security. That’s 342 base64 characters
(base64 is used for displaying keys and encrypted text in PGP), or 617 decimal digits.
Those are big numbers, so you can imagine the difficulty of multiplying them, let alone
trying to factor them. Try doing that by hand.

The private key is to be kept jealously guarded, whereas the public key is to be
publicized so people can retrieve it and send you encrypted messages. The private key is
needed to read messages encrypted with the matching public key, so this process
ensures that only you can read them. The actual encryption algorithm is IDEA, which is

http://en.wikipedia.org/wiki/Pretty_Good_Privacy
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/International_Data_Encryption_Algorithm
http://en.wikipedia.org/wiki/RSA_(algorithm)

 55

much faster than RSA and does not impose limits on the size of the message. The
random encrypt/decrypt key used for the IDEA encryption is what RSA actually encrypts
with a public key and later decrypts with the private key. You can also use the private
key to make a signature (actually, a random-looking string, plus some identifying tags) of
a given text. People can load the appropriate text, the signature, and your public key
into PGP, and then verify that this particular signature of this particular text could only
have been made with the private key matching the public key provided.

Very clever indeed. This opens up the possibility of exchanging confidential information
without having a pre-established secret password, making binding contracts, and a
bunch of other neat things. Today, PGP and similar methods are at the root of secure
communications between computers and the digital certificates that tell them that
another computer or a given piece of software are legit. But Phil Zimmermann’s original
vision for secure communications between regular people has largely failed. We still
email or text each other in a way that anyone in-between can read what we write. Why?

In a 1999 paper entitled “Why Johnny Can’t Encrypt,” researchers Whitten and Tygar
addressed the slow pace of adoption of PGP (and indeed of most other security-
oriented software) and placed the blame on confusing icons and menu structures, and
on the assumption that users had a minimal knowledge of public key cryptography. This
was in 1999, when PGP was in its first GUI version (5.0). Ten years later, a follow-up
study involving PGP 9.0 found that the software led people to make key pairs with a
greater chance of success, but encryption security had actually gotten worse since most
users ended up sending unencrypted messages unknowingly. There was also a “Johnny
2” study that concluded that the problem wasn’t going to go away until key certification
was handled in a completely different way. A "Confused Johnny" study made in 2013
said that users actually preferred to see the encrypted output in order to make sure that
encryption was indeed taking place, but that they preferred not being involved with key
handling.

I think the root reason for these problems, which have so far have prevented PGP and
its cousin S/MIME from making it in the general user world is that PGP, as well as
S/MIME, was originally based on RSA. The newer, commercial versions of PGP are rather
based on a different public key algorithm named DSA, which does not have the same
restrictions on the keys as RSA, but the processes and conventions imposed by RSA are
still there. Because an RSA private key can only be made in certain ways (not true with
DSA, but the RSA key-generation process was retained for compatibility), PGP has to
make the private key for you. The result, as we discussed above, is a very long,
impossible to remember string of random-looking characters. Therefore, PGP stores the
private key in a computer file, since to do anything beyond encrypting messages for
someone else to read you must have your private key.

And here is the problem. Either the place where you store your private key is perfectly
secure from tampering and eavesdropping, or you must add further security to protect
it. PGP “solves” this problem by encrypting the private key with IDEA, using a separate
key, before it writes it down to a file. Thankfully, IDEA admits arbitrary keys, so PGP asks

http://www.gaudior.net/alma/johnny.pdf%E2%80%8E
http://cups.cs.cmu.edu/soups/2006/posters/sheng-poster_abstract.pdf
http://cups.cs.cmu.edu/soups/2006/posters/sheng-poster_abstract.pdf
http://groups.csail.mit.edu/uid/projects/secure-email/soups05.pdf
http://groups.csail.mit.edu/uid/projects/secure-email/soups05.pdf
http://cups.cs.cmu.edu/soups/2013/proceedings/a5_Ruoti.pdf
http://en.wikipedia.org/wiki/S/MIME
http://en.wikipedia.org/wiki/Digital_Signature_Algorithm

 56

you to come up with a “passphrase” (code for long, hard to guess password), which is
used to encrypt the private key. When you need to use your private key, PGP retrieves
the file containing it in encrypted form, asks you for the passphrase, and decrypts it
using IDEA. The private key is never displayed in decrypted form (at least for you to see
it).

This may solve the problem for a corporation, but it doesn’t solve it for the general
population. You still need to have that file containing your encrypted private key, in
addition to remembering the passphrase that unlocks it. If you lose the file, you’re
hosed. If you are using someone else’s computer and don’t have a way to retrieve that
file remotely or don’t carry it along in a flash drive, you’re hosed. The public key also has
problems arising from their authenticity, but what makes PGP rather painful to use by
the general public is having to manage that “secret key ring”, as they call it.

Okay, you *can* write out the private key file so it is displayed in conventional ASCII
characters, and then you can paste it into your Google files or any other place that you
can access online. It will still be encrypted so that no one can use it without your
passphrase. But then you’ll be trusting someone else to guard your precious private key.
If they fail, someone could delete it, corrupt it, or switch it with a counterfeit key. On
top of that, most online services have been known to open their users’ accounts to
more or less accredited “investigators,” often without a warrant. (Note: this was written
months before Edward Snowden blew the whistle on NSA’s pervasive data-collecting
programs)

PGP public keys are even longer than the private keys, and just as random-looking.
Therefore, they must be stored somewhere. Because they are “public” it is okay to
display them in the open and upload them to public places. This is what PGP keyservers
are: computers where people have uploaded their public keys so other users can find
them and thus can send them messages encrypted with those public keys, for their eyes
only to read. The problem is that there is no intrinsic assurance that a certain key
belongs to a certain individual. PGP again “solves” this problem with something called
“web of trust.” Essentially, people add electronic signatures (made with their private
keys) to other people’s public keys, to certify that they believe the keys belong to the
people the keyserver says they belong to. The signatures are either made by other
individuals, whom you may or may not know, or by an intrinsically trusted,
professional Certification Authority, usually for a fee. Think of a digital notary public.

So when I want to write a PGP-encrypted email to a certain individual, I am asked
to fetch his/her public key from a key server, where keys are usually catalogued by
name or email address, then load it into PGP (often permanently by means of its “public
key ring”), and then enter the message and tell PGP to encrypt it. The more recent
versions of PGP can do this from a GUI, including the key-fetching process, but are still
hard to use by a majority of people. Even if I succeed in obtaining the appropriate keys, I
usually have no assurance, other than the digital signature of people I don’t know, that
the keys actually belong to the right person and not to a third malevolent party. I know

http://gizmodo.com/5994364/new-documents-suggest-the-irs-reads-emails-without-a-warrant
http://en.wikipedia.org/wiki/Web_of_trust
http://en.wikipedia.org/wiki/Certification_Authority

 57

this because I’ve made keys that I’ve successfully uploaded to a key server, using all
kinds of pretend names except my own.

To be sure, PGP encourages certain standard practices that provide a modicum of
reassurance. One of them is that people should sign their public keys (thereby making
them twice their original length) before they post them. The idea is that people then can
verify that, if you are able to sign your public key with your private key, you must have
both keys so at least it’s not someone who just ran into your public key somewhere who
is posting that key. Another best practice is to add a signature to a text right before it is
encrypted. This way the recipient of the text has assurance, by checking the signature,
of the sender’s identity. Unfortunately, signing a message before encrypting it makes it
longer and harder to process later on as well.

So much for specific aspects of usability, but how about the interface itself? Whitten
and Tygar piled up most of their criticism against PGP in this area. Leaving aside whether
user interaction is from a command line, and in the original PGP, or there are graphics
involved as in the versions after 5.0, PGP forces the user to adopt a metaphor that does
not match anything else in the user’s experience, namely, to lock things with one key
and unlock them with another. People have never done this before and are therefore
confused from the very start. Consistent use of technical words such as “encrypt”, which
people tend to associate with tombs and corpses rather than computers the first time
they hear it, doesn’t help much, either.

How does PassLok help with all this? To begin with, in PassLok your private key is
whatever you want. If you want it to be “I feel depressed without fried Twinkies,” that’s
fine with PassLok. Assuming you can remember it, you don’t need to write it down
anywhere, and certainly you don’t have to use a flash drive, or store it in a file
anywhere, plain or encrypted. PassLok will complain that it’s kind of weak but will still
make a public key to match it. Even better, it will compensate automatically for the
weakness of your key. The only thing you might notice is that processing is kind of slow,
which will hopefully encourage you to use a better key.

And by the way, PassLok doesn’t have “public keys” and “private keys.” It has “Locks”
that people can put on a text or file so nobody can read it, and “Keys” that unlock a
locked item. Everybody has used those before in hardware. All of this may sound like a
little exercise in word substitution, but it can make all the difference in a user’s
comprehension of what’s going on.

PassLok Locks are much shorter than PGP public keys: just 50 characters, versus several
hundred. They are a lot more secure, too, since 255-bit elliptic curve keys are believed
to be equivalent to RSA keys longer than 7,500 bits. Because PassLok keys are short,
they can be sent by text messaging or made into QR codes so that people can read your
key out of your calling card, which helps a lot with authentication. They also fit within
the “extra info” fields of just about all webmail contact lists, where you can upload keys
as you get them instead of storing them in a special key ring file, or fetching them every
time from a key server. If you feel lazy, you can just paste the Lock into PassLok, and
then PassLok will remember it from then on, especially if you use the Chrome app

http://passlok.com/

 58

version, which syncs everything between computers as soon as you log into your Google
account. Giving someone a PassLok Lock is only slightly more involved than giving a
phone number, which is precisely the metaphor that PassLok uses for distributing and
authenticating Locks.

PassLok uses no web of trust or certification authority to authenticate its public keys.
How are then people supposed to get someone’s Lock with a minimum of confidence
that it does indeed belong to that person? Here the problem may be the question itself.
Ask yourself: how do I get someone’s cell phone number with a minimum of confidence
that it does indeed belong to that person? I don’t know what you do, but I look at that
person’s physical or electronic card first, or ask someone else who might have it. The
phonebooks in my house have been gathering dust for years, as have PGP key servers all
over the world (many of which aren’t current or active anymore, once you check). When
I get a phone number, I use it right away, and let the actual use serve as verification that
it is correct.

It’s the same way with a particular PassLok Lock. The first time I use it, I am not so
confident that it will encrypt messages for the intended individual and not someone
else, but hopefully I’ll feel better about it after a couple exchanges. If I am paranoid
about someone intercepting our communications and placing himself in the middle,
PassLok has a simple authentication mechanism built-in where I can get the other
person on the line and ask him/her to spell out the unique ID of his/her Lock (or mine). I
can post a video of myself spelling out my Lock for the whole world to see, and it
becomes one with my Lock. I’ve actually done that every time the evolution of PassLok
has made my old Lock obsolete.

PGP has had key servers since the beginning. The idea is that people load their public
keys to the key server so that others can find them and use them; after all, public keys
are made to be publicized. Neat idea, but unfortunately most PGP key servers are far
from useful because of some serious fundamental flaws. The first is that anyone can
upload a public key. The server has no means of verifying the source, so it accepts
everything, including public keys that might have been made by someone trying to pose
as someone else. The second is that keys are never deleted (though they can expire or
be revoked by means of an additional certificate), leading to multiple keys for the same
user that need to be sorted out by those who want to write to this user. There are at
least four different PGP keys bearing my name, and not even I can tell which is the good
one.

PassLok has had no key server for the longest time because it is not strictly necessary.
Starting with version 1.7, however, a “General Directory” has been added as a
convenience, but it is significantly different from the old PGP key servers. For one thing,
users need to reply to a confirmation email every time they add, delete, or modify an
entry (yes, entries can be fully deleted), so that a poser would need to be actively
interfering with the victim’s email in order to succeed. Then, each entry has space for an
authenticating video, and the interface has a button to simplify the action of viewing it.
This video, similar in concept to the code-authenticating video mentioned below, shows

 59

the Lock’s owner reciting a part of his/her Lock. This way, people who have met this
person can be assured that the Lock is authentic, without a need for certificates and
webs of trust.

Improving on PGP, which only has public-key encryption to which a signature might be
added to authenticate the sender, PassLok adds a simpler “Signed” encryption mode,
while retaining the ability to do Anonymous public-key encryption. The Signed message
ends up being shorter, too, and is easier to process on the receiving end than an
anonymous locked message. Signed encryption is available as an option, but it doesn't
involve adding a digital signature to the message. Again, this is because PassLok has
under its hood the Diffie-Hellman key exchange algorithm, which involves both parties,
rather than the RSA algorithm, which is one-sided.

Starting with version 1.6, PassLok includes a third “PFS” locking mode (plus a more
stringent “Read-once” mode, starting with version 2.1), in addition to Anonymous and
Signed modes. PFS is short for “Perfect Forward Secrecy,” which means that nobody,
including those originally involved in the message exchange, can read an old message
after the exchange is over. In the case of Read-once messages, they sort of “self-
destruct” and become unreadable right away. In other programs, this typically requires
participants in a conversation to be connected at the same time to some server (not
PGP, though, since it does not have a real-time component or anything resembling
forward secrecy), but PassLok achieves this very desirable attribute through email or any
other asynchronous channel. It does so by generating a new random Key for each new
message, which is stored only until the message is replied to, and then is overwritten by
another Key. Since the encryption Keys never leave the device where they were made
and are destroyed after they are used, the messages become unreadable to everyone.

Starting with v1.4, PassLok also includes the Shamir Secret Sharing Scheme, seamlessly
built into its interface via a single button. Among other things, this means that a user
can in fact store random keys without worrying too much about their being lost or
compromised. The only thing he/she needs to do is split the key into several parts,
which then are stored at separate locations that only the user knows. Spare keys can be
produced, too, just in case.

PGP was born as a command-line process to which a graphical user interface was later
added, and it shows. PassLok, on the contrary, was born as a web app. There are no
multiple versions of PassLok compiled to run on different operating systems, just the
one page, which runs without modification both in PCs and mobile devices, under any
operating system. You can actually read the code if you feel inclined it, and I do
recommend that you do precisely that sometime so you can be sure the page is not
sending or receiving any information to or from the outside. It can be as easy as doing a
“show source” in the browser (every browser does this differently, but they all use ctrl-u
or opt-cmd-u as a shortcut), followed by searches for things like http://, https://, ftp://
and so forth, which a webpage needs to execute in order to communicate with the
outside.

 60

For the more paranoid amongst us, hashes of the source code (such as the SHA256
hash) are published with each new version of PassLok, so you can check its integrity. Just
tell the browser to show the source code, copy it, and paste it into a hash-making
program or online utility. If the code is genuine, there should be a match with the
published hash. If you are still concerned that the sources displaying the hash codes
might get hacked by someone who also changed the working code, watch the optional
video of me reading the hash, which is a lot harder to fake. Once you have a copy of
PassLok that you trust, you can save it somewhere within your device, or in the cloud so
you can use it when you need it. PGP can’t offer any such assurance for the paranoid.

Much has been made of the presumed vulnerability of client-side encryption methods
like PassLok. The argument usually goes like this: an enemy could modify the code
before it gets delivered to the client application (the browser, in PassLok’s case), and the
user wouldn’t have a clue that it has happened; case closed. That is, if the user never
bothers to check its integrity. To go even further, I would argue that exactly the same
thing could happen to a program, such as PGP, that is downloaded from a server and
then installed on the device.

Developers of compiled software fight this by publishing an MD5, SHA1 or, more
recently, SHA256 hash of the installation file so users can check it for tampering. The
hash is usually on the same page as the download link and without a video of the
developer reading it out loud. PassLok hashes, on the other hand, are published on
different servers, and they include videos of the author reading them. Unlike with
compiled programs, PassLok users don’t have to trust it in any way before they verify
the code as genuine. The code is perfectly dead until they put anything on it and start
pushing buttons. This is usually not the case with compiled software, including PGP, to
say nothing of the impossibility of looking at the code itself and try to figure out what it
is doing. So which is more secure against tampering?

And for the super-paranoid, those who lay awake at night worrying that they, or
someone they communicate with, might get their secrets beaten out of them by non-
digital methods, PassLok has a hidden channel built-in, which PGP and S/MIME have
never had and probably will never have. This means that most PassLok messages are
capable of containing an additional message, encrypted under a separate key. Those
who do not have that key cannot obtain the second message, and neither can they
detect whether or not there is one at all. This functionality is accessed by checking a
single “Decoy mode” box, so named because it is perfectly possible to generate
completely misleading exchanges while the actual information is being conveyed
through the subliminal channel.

Beginning with version 1.4, PassLok also has the ability to disguise its output as common
text or within images, what is known as steganography. The process is a simple one-
button click, which is reversed with the same one-button click. The default text is
English, but you can change the language quite easily. This way, anyone scanning emails
will have a much harder time detecting that encryption is taking place. If you hide

http://en.wikipedia.org/wiki/SHA-2

 61

PassLok’s output inside an image, the new data replaces the noise within the image, so
human eyes are unable to detect anything being there.

Let me just mention one last killer PassLok feature that PGP can only dream about. It
turns out that PassLok is not restricted to asynchronous communications like email.
Beginning with version 2.1, PassLok has a real-time chat component that includes the
exchange of text, files, audio, and even video. For several participants at the same time.
End-to-end encrypted. Using a single button on the interface. PassLok chat, which is
based on the new WebRTC protocol currently supported by Chrome, Firefox, Opera, and
a couple more browsers, begins with a user making a locked invitation for other users to
join in a chat. This invitation can be sent out safely by email or similar means. When the
time for the chat arrives, participants only need to click a button to open the invitation,
give themselves names for the chat, and join in. The connection is direct between each
pair of participants. Everything is encrypted by the browser itself and there is no record
anywhere.

And I’ll stop here. I could go on talking about data compression, which makes Passlok-
locked items less than half the size of items encrypted with other programs, or about
Reed-Solomon error correction, which preserves the functionality of most PassLok items
even if they are corrupted, or about variable key stretching, which flicks the finger at
hackers by forcing them to spend a lot of computational effort on the worst possible Key
choices. All under the hood, so the user doesn’t even know it’s there but is benefitting
from it nonetheless. The list of features unique to PassLok goes on and on.

To summarize:

 PGP forces you to keep secret files that might be lost, corrupted, or compromised.
PassLok uses no secret files of any kind. If a user insists on storing secret material,
PassLok can split it into parts that are useless unless the whole set, or a substantial
part of it, is put together. Anything that PassLok stores for users’ convenience is
encrypted.

 PGP forces you to install things in a particular computer, and then use that computer
or one similarly equipped, which makes it dangerous if that computer is compromised.
PassLok is a perfectly portable web app; you can use any PC or smartphone in the
world, so you can be sure there’s no foul play. Even its Lock directory is portable, and
can be moved easily from one device to another. The Chrome app version syncs
automatically between computers.

 PGP public keys are very long and unwieldy, including certifying signatures in addition
to the keys themselves; signatures can only be read by the PGP program. There are at
least two kinds of keys, RSA and DSA of different bit lengths, which are incompatible
with each other. People are unable to read the certificates, and must rely on the
software to check things out. PassLok Locks are short. They are transmitted and
verified in the same way as a phone number without official key servers. They can be
authenticated through a separate channel or through any of the many audiovisual
methods freely available today.

 62

 PGP is built on the RSA public key algorithm, which would need keys longer than 3,000
bits for a security level comparable to that of PassLok, which is built on 255-bit elliptic
curve math.

 PGP started using only the 128-bit IDEA algorithm for its main encryption method (it
allows more secure methods now). PassLok started out with the strongest, 256-bit
version of AES (a.k.a. Rijndael), the winner of the 2001 NIST contest for best
encryption algorithm, and since version 2.2 uses Xsalsa20, an open-source stream
cipher of security comparable to that of AES-256, but much faster. S/MIME uses triple-
DES, which lost to AES in that contest. IDEA didn’t even compete.

 PGP only admits one encrypted message at a time. So does S/MIME. In PassLok, a
second message whose very existence is impossible to detect can coexist with the
main message.

 PGP outputs easily detectable random-looking strings. PassLok can produce output
that looks like normal text. It can also hide its output within images, undetectable to
the eye.

 PGP does only asynchronous communication such as email. PassLok includes real-time,
peer-to-peer secure chat, which can involve even video.

 PGP requires a noise-free channel. Not so PassLok, which includes two kinds of
automatic error correction.

 PGP uses difficult to understand terminology derived from cryptologists’ jargon.
PassLok only talks about Keys and Locks. In PassLok, extensive help and tutorial videos
are always just one click away.

As a table:

Pretty Good Privacy

(PGP) and S/MIME
PassLok

Portable No Yes

OS-independent No Yes

Installation-free No Yes

Storage-free No Yes (storage available)

Small public keys No Yes

Spread public keys w/o Internet No Yes

Encryption modes 1 5

Forward secrecy No Yes, 2 modes

 63

Short message mode No Yes

Hidden messages No Yes

Fake text steganography No Yes, 4 modes

Image steganography No Yes, 2 modes

Secret Splitting No Yes

Transparent authentication No Yes

Error correction No Yes, 2 kinds

Real-time chat No Text, files, audio, video

Encryption bitlength 128 or 256 256 always

RSA-equivalent public key strength 1024- or 2048-bit +3000-bit

Variable key stretching No Yes

Main interface pages many 1

Learn mode No Yes

Built-in tutorial videos No Yes

Jargon-free No You be the judge

