
PassLok	for	Email	technical	document	
(updated	as	of	version	0.4.2,	9/11/17)	

By	F.	Ruiz	and	team.	

In	this	document,	we	explain	what	drives	the	design	of	the	different	components	and	functions	
of	PassLok	for	Email,	the	version	of	PassLok	that	integrates	with	popular	email	services,	and	the	
specific	decisions	made	at	every	point.	It	is	meant	as	a	companion	to	the	actual	source	code,	in	
order	to	help	those	trying	to	audit	it.	Much	of	the	contents	are	copied	from	the	“PassLok	
Technical	Document,”	which	does	not	focus	on	the	email-integrated	version	of	PassLok.	This	is	a	
document	in	progress.	

General	design	criteria	

PassLok	for	Email	is	conceived	as	an	easy-to-use,	lightweight	Chrome	extension	that	adds	some	
of	the	cryptographic	capabilities	of	PassLok	to	popular	browser-based	email	services	like	Gmail,	
Yahoo,	and	Outlook/Hotmail.	The	idea	is	to	add	high-strength	encryption	on	a	part-time	basis	to	
the	user’s	preferred	service,	rather	than	to	create	a	new	service	that	users	would	need	to	
connect	to	separately	from	their	preferred	email.		

Here	is	a	list	of	design	goals:	

• High	cryptographic	strength.	
• Reasonable	performance	even	on	low-end	computers.	
• Inherently	trustworthy.	If	the	complete	code	is	human-readable,	so	much	better.	
• No	servers	beyond	the	email	provider.	Therefore	no	liability	from	storing	user	data.	
• Very	easy	to	use	even	for	cryptography	laypersons.	
• Reduce	key	management	to	the	minimum	possible.	
• Aimed	at	asynchronous	communications,	but	can	do	synchronous	as	well	if	it	is	not	too	

hard.	

To	meet	these	goals,	PassLok	for	Email	is	a	Chrome	and	Firefox	extension	consisting	essentially	
of	JavaScript	code,	which	has	the	following	desirable	traits:	

• Great	cross-platform	compatibility,	since	the	Chrome	browser	runs	on	any	computer	
and	any	operating	system	with	a	decently	modern	browser	available.	Users	also	tend	to	
be	proficient	with	browsers,	which	enhances	ease	of	use.	Even	though	Chrome	currently	
does	not	support	extensions	on	mobile	devices,	there	a	plans	for	this	in	the	near	future.	

• Auditability:	the	entire	code	is	human-readable,	so	expert	users	are	able	to	scan	it	for	
possible	vulnerabilities	without	resorting	to	specialized	software.	

• Authenticity.	Code	delivered	to	individual	machines	is	signed	by	Google	so	Chrome	
would	refuse	to	install	it	if	it	has	been	tampered	with.	Additionally,	it	is	fairly	easy	to	

make	sure	that	no	changes	have	been	introduced	even	without	recourse	to	the	
signature,	simply	by	comparing	a	one-way	hash	of	the	archived	code	with	a	trusted	
value.	

• Computations	coded	in	JavaScript	are	performed	locally,	without	involving	a	server	that	
might	be	compromised.	

• Unlike	regular	web	pages,	Chrome	extension	code	and	data	are	protected	against	
intrusion	from	web	pages	not	in	their	manifest,	and	from	all	other	extensions	running	in	
the	browser.	

There	are	also	a	few	difficulties	introduced	with	this	approach:	

• JavasScript	code	is	not	given	full	access	to	the	computer	hardware	or	the	rest	of	the	
operating	system.	This	is	especially	severe	with	Chrome	extensions,	which	are	not	even	
able	to	open	new	tabs	without	an	intermediate	“background”	page,	or	to	pass	data	
outside	of	the	environment	comprising	their	own	code	and	data	and	those	of	the	page	
with	which	they	interact.	

• JavaScript	is	considered	unsafe	for	cryptography,	according	to	some	experts.	Their	
criticism	is	usually	aimed	at	network	interactions,	however,	which	do	not	exist	in	
PassLok.	The	additional	security	measures	involved	in	Chrome	extensions	actually	create	
an	environment	that	is	safer	from	intrusion	than	the	operating	system	itself.	

• The	code	will	run	more	slowly	than	if	it	had	been	converted	to	a	lower-level	language.	
Modern	browsers,	on	the	other	hand,	include	highly	optimized	JavaScript	engines	so	
that	in	practice	this	is	not	a	serious	problem.	

We	now	pass	to	discuss	the	different	design	aspects,	beginning	with	those	under	the	hood.	But	
before	we	start,	a	warning	for	experts	reading	this	document:	in	order	to	make	it	as	accessible	
as	possible	to	common	users,	PassLok	uses	certain	words	with	a	meaning	that	may	be	different	
from	the	commonly	accepted	meaning	among	experts,	but	which	is	believed	to	be	closer	to	the	
meaning	understood	by	common	users.	Whenever	this	situation	is	encountered,	the	word	will	
be	capitalized.	Thus,	a	“Signed”	message	does	not	involve	a	digital	signature,	but	rather	it	is	
devised	so	that	it	will	not	be	decrypted	unless	the	sender	is	correctly	identified	by	means	of	
his/her	public	key.	A	“Key”	is	a	private	key,	resulting	from	applying	a	key	derivation	function	to	a	
user-supplied	Password,	and	its	matching	“Lock”	is	its	matching	public	key.	Additional	terms	will	
be	defined	as	they	are	encountered.	

Cryptographic	methods	
	

PassLok	implements	symmetric	encryption	as	well	as	three	kinds	of	asymmetric	encryption.	The	
underlying	crypto	engine	prior	to	version	2.2	of	PassLok	Privacy	(the	standalone	program	from	
which	PassLok	for	Email	derives)	was	SJCL,	an	open-source	JavaScript	library	originally	
developed	by	a	team	of	researchers	at	Stanford	University.	With	version	2.2.0,	PassLok	switched	
to	TweetNaCl,	a	JavaScript	implementation	of	the	open-source	NaCl	suite,	by	Dan	Bernstein	et	
al.	SJCL	is	a	few	years	old	and	has	reached	a	stable	condition	but	it	is	still	actively	maintained.	
Tweet	NaCl	is	newer	but	already	tested	against	the	original	C-source	NaCl.	Both	have	been	
checked	by	experts	and	flaws	are	timely	patched.	SJCL	is	also	quite	speedy	compared	to	similar	
codes,	but	NaCl	is	significantly	faster	in	all	its	operations.	

These	are	the	features	of	SJCL	that	were	used	in	PassLok	Privacy	up	to	version	2.1:	

• Symmetric	encryption/decryption	using	the	Advanced	Encryption	Standard	(AES,	also	
known	as	Rijndael).	SJCL	allows	128-,	192-,	and	256-bit	keys;	PassLok	uses	256-bit	keys	
exclusively.	SJCL	outputs	in	either	CCM	or	OCB2	mode,	both	of	which	are	authenticated	
modes.	PassLok	uses	the	default	CCM	mode	in	every	instance.	The	SJCL	engine	is	also	
capable	of	using	as	plaintext	the	full	range	of	UTF16	characters,	which	is	useful	for	non-
western	languages.	

• Cryptographically	strong	pseudo-random	number	generation.	SJCL	has	a	timer-based	
entropy	collection	function,	which	is	initialized	as	soon	as	PassLok	loads.	Additional	
entropy	is	collected	every	time	the	user	interacts	with	an	interface	element,	which	
happens	at	non-predictable	times	(especially	the	fractions	of	a	second,	which	is	what	is	
used	to	collect	entropy).	

• Elliptic	curve	math.	SJCL	supports	Weierstrass	elliptic	curves,	of	the	form	y2	=	x3	+a*x	+	
b,	and	includes	the	specific	parameters	for	a	few	standard	curves.	PassLok	uses	the	p521	
curve	over	a	prime	field	standardized	by	NIST.	The	p521	parameters	were	not	originally	
included	in	the	official	SJCL	distribution	but	were	added	by	our	team.	These	parameters	
were	subsequently	discussed	by	others	on	the	SJCL	forum,	and	there	was	a	perfect	
match	with	our	parameters.	The	p521	curve	is	based	on	the	2521	–	1	Mersenne	prime	
number,	which	has	interesting	properties	that	provide	speed	and	space	savings.	After	a	
pull	request	was	submitted	and	accepted,	the	SJCL	master	now	contains	the	parameters	
for	this	curve.	We	discuss	later	some	more	on	this	choice.	

• SHA512	one-way	hash,	which	is	used	in	the	signature	function	of	PassLok.	
• The	SCRYPT	key-generation	algorithm,	although	not	an	official	component	of	SJCL,	has	

been	developed	by	an	open-source	third	party	to	blend	seamlessly	with	the	SJCL	library.	
It	is	used	in	PassLok	to	convert	user-provided	keys	(which	tend	to	be	short)	into	the	
random-looking	256-bit	keys	that	are	actually	used	to	encrypt	and	decrypt	in	AES,	and	

521-bit	private	keys	used	in	symmetric	encryption.	SCRYPT	has	been	designed	
specifically	to	defeat	attempts	at	building	massively	parallel	key-guessing	hardware.	

With	version	2.2,	PassLok	Privacy	made	the	switch	to	NaCl,	which	is	also	open-source	and	has	
significant	differences	with	respect	to	SJCL.	The	list	above	is	repeated	here	for	NaCl:	

• Instead	of	AES,	NaCl	uses	XSalsa20,	a	stream	cipher	that,	although	not	standardized,	has	
been	proposed	as	a	standard	for	the	eSTREAM	competition,	which	bears	some	
similarities	to	the	older	AES	competition	but	focuses	on	faster	stream	ciphers.	In	the	
roughly	10	years	since	XSalsa20	was	developed,	no	significant	attack	has	yet	been	found	
against	it.	The	reason	why	XSalsa20	is	selected	is	because	of	the	convenience	of	using	it	
together	with	the	Curve25519	elliptic	curve,	by	the	same	authors.	XSalsa20	is	
significantly	faster	than	AES	(up	to	three	times),	but	this	is	not	a	crucial	consideration	for	
PassLok.	

• NaCl	uses	the	PRNG	built	into	most	modern	web	browsers	rather	than	having	its	own.	
This	has	the	advantage	that	entropy	collection	is	much	more	effective.	The	library	gives	
an	error	if	no	secure	PRNG	is	available.	

• Two	elliptic	curves	are	built	into	NaCl:	Curve25519,	a	Montgomery	curve	of	the	form	y2	
=	x3	+	a*x2	+	x,	and	Ed25519,	a	Twisted	Edwards	curve	of	the	form	y2	=	x2	+	a*x2*y2	+	1.	
The	two	curves	are	used	for	different	purposes.	Curve25519	is	used	for	establishing	
Diffie-Hellman	combinations	of	public	and	private	key;	Ed25519	is	used	for	a	digital	
signature	scheme	using	the	Schnorr	algorithm.	The	two	curves	are	related	by	a	change	
of	variable,	so	that	a	point	in	one	corresponds	to	a	point	in	the	other.	Using	them	is	
slightly	more	complex	than	with	the	curves	in	SJCL,	but	still	manageable.	

• NaCl	uses	SHA-512	only	as	a	hash	function.	

• There	is	a	JavaScript	implementation	of	SCRYPT	that	matches	the	NaCl	library	quite	well,	
although	it	does	not	depend	on	it.	It	is	roughly	twice	as	fast	as	the	one	used	with	SJCL,	
which	permits	a	double	number	of	iterations.	It	is	by	the	same	authors	as	the	JavaScript	
TweetNaCl,	and	originally	designed	to	run	asynchronously,	but	the	current	version	also	
supports	synchronous	operation,	which	is	the	way	it	is	used	in	PassLok.	

NaCl	runs	faster	than	SJCL,	but	this	is	not	the	reason	why	it	was	chosen	for	version	2.2	of	
PassLok	Privacy.	The	real	reason	is	that	the	additional	strength	of	the	p521	curve,	which	is	
currently	supported	only	by	SJCL,	was	seen	as	unnecessary	in	view	of	other	components	of	the	
code	that	are	not	nearly	as	strong.	If	Curve25519	is	adequate	for	the	public	key	functions	of	
PassLok,	then	it	is	preferred	because	of	its	lack	of	ties	with	the	NSA,	which	is	suspected	by	some	
to	have	fostered	flawed	standards	in	order	to	exploit	them	later	on.	Thus,	there	is	a	cloud	of	
suspicion	over	the	NIST-standardized	curves,	which	were	actually	developed	by	the	NSA,	while	
there	is	none	for	Curve25519	and	its	derivatives.	Below	are	the	key	arguments	that	led	to	the	
decision	to	switch	from	SJCL	to	NaCl:	

• Both	AES-256	and	XSalsa20	have	a	computational	complexity	(number	of	calculations	
needed	to	reverse	them)	of	around	250	bits,	since	some	algorithms	have	been	
discovered	that	beat	brute	force	search	by	a	few	bits,	but	no	more.	250	bits	is	still	
considered	much	stronger	than	necessary	given	current	computational	power.	So	in	this	
regard	XSalsa20	has	the	edge	because	of	its	superior	speed,	though	it	is	not	as	well-
vetted	as	AES.	

• Both	Curve25519	and	p521	have	a	computational	complexity	roughly	half	of	the	prime	
number	bits.	That	is,	127	and	250	bits	respectively.	This	would	make	p521	much	
stronger	than	Curve25519,	though	it	executes	significantly	more	slowly	(roughly	10	
times	for	a	typical	scalar	multiplication).	On	the	other	hand,	Curve25519	keys	are	only	
43	base64	characters,	whereas	p521	keys	use	87	of	the	same	type,	more	than	twice	as	
long.	It	is	desirable	to	use	public	keys	that	are	as	short	as	possible	so	users	can	handle	
them	as	they	would	handle	a	phone	number.	Here	p521	still	has	the	advantage	because	
its	security	but,	is	it	really	necessary?	

• The	weakest	point	is	actually	the	user-generated	Keys	that	PassLok	uses	as	private	keys,	
after	stretching.	Experimental	measurements	of	password	entropy	show	that	it	is	quite	
difficult	for	a	user	to	remember	a	password	having	entropy	larger	than	60	bits.	Key	
stretching	cannot	do	much	to	increase	the	computational	complexity	of	a	weak	key,	
which	likely	will	be	the	subject	of	a	dictionary	attack	or	similar.	For	instance,	1024		(=210)	
rounds	of	SCRYPT	stretching	at	r	=	8,	p	=	1	take	about	the	same	computer	time,	using	
the	latest	JavaScript	implementation,	as	a	single	Curve25519	scalar	multiplication.	Thus	
adding	1024	SCRYPT	rounds	would	double	processing	time	when	obtaining	a	public	key	
from	a	(weak)	private	key,	equivalent	to	1	bit	of	computational	complexity.	There	is	still	
a	long	distance	to	cover	from	the	60	bits	of	a	user-memorized	key	to	the	127	bits	of	
complexity	of	a	truly	random	Curve25519	key.	This	would	mean	increasing	the	
processing	time	by	a	factor	of	2127-60	=	1.47x1020.	If	the	unstretched	computation	took	1	
ms,	this	would	be	equivalent	to	adding	computations	to	take	an	additional	4.68	billion	
years.	Clearly	users	are	not	going	to	put	up	with	that.	

• In	other	words,	the	user-supplied	Key	is	the	weak	link,	and	no	amount	of	key-stretching	
can	fix	this.	There	is	no	harm,	therefore,	in	using	Curve25519	rather	than	the	p521	NIST	
curve	in	terms	of	real	security.	Since	the	Curve25519	public	keys	are	half	as	long	and	
everything	processes	much	faster,	we	decided	to	switch	to	Curve25519,	which	meant	
also	using	the	NaCl	library	rather	than	SJCL.		

And	now	we	discuss	how	PassLok	(both	standalone	and	integrated	with	email)	uses	all	of	these	
primitives.	We	begin	with	symmetric	encryption	and	decryption,	which	is	at	the	base	of	all	
encryption	modes.	Symmetric	encryption	is	also	the	type	of	encryption	used	in	Invitation	
messages,	where	the	recipients’	public	keys	are	not	known	at	the	time	of	encryption.	

To	encrypt	a	message	with	a	symmetric	key,	PassLok	normally	goes	through	this	process	(except	
in	Pad	mode,	described	later,	which	does	not	use	NaCl	primitives):	

1. Unless	the	plaintext	contains	an	encoded	file,	which	is	usually	quite	random-looking	by	
itself	and	won’t	compress	well,	it	is	first	compressed	into	a	base64	string	by	invoking	the	
LZ-String	JavaScript	library.	This	library,	also	open-source	like	everything	else	included	in	
PassLok,	is	chosen	for	its	speed	and	ability	to	handle	UTF16-encoded	plaintext.	

2. Key	strength	is	evaluated	by	the	WiseHash	algorithm,	developed	by	the	PassLok	team,	
and	a	variable	number	of	SCRYPT	iterations	are	applied	to	the	key	depending	on	the	
measured	strength.	The	WiseHash	algorithm,	described	in	more	detail	later	in	this	
document,	measures	the	bit	entropy	of	the	key	based	on	the	alphabet	used,	the	number	
of	characters	(taking	into	account	repetitions),	and	the	presence	of	common	words	and	
their	variants.	It	includes	a	dictionary	with	the	10,000	most	common	English	words	and	
the	1,000	most	common	English	passwords.	Extension	to	other	languages,	although	not	
currently	implemented	in	PassLok,	is	easy	to	do	without	changing	the	basic	code.		

3. To	generate	a	key	for	use	in	XSalsa20,	SCRYPT	takes	the	user-supplied	key	plus	a	salt	
string	and	generates	a	256-bit	stretched	key	by	using	parameters	r	=	8,	p	=	1,	and	a	
number	of	iterations	calculated	from	the	measured	entropy	of	the	key,	in	bits.	The	
formula	is:	exp	=	max(1,ceil(20	-	entropy/6)),	so	that	the	number	of	iterations	is	N	=	2exp.	
The	maximum	number	of	iterations,	for	known	bad	keys,	is	220,	far	higher	than	in	
PassLok	2.1,	and	is	more	smoothly	graded	than	in	that	version.	Both	formulas	give	2	
iterations	for	key	entropy	above	114	bits.	When	encrypting	an	invitation,	the	sender’s	
public	key	in	base36	encoding	is	used	as	symmetric	key.	Since	this	is	expected	to	appear	
random,	its	entropy	is	assumed	to	be	maximum	for	its	length,	and	so	an	exponent	of	
value	1	is	applied	at	the	key-stretching	step.	

4. The	stretched	key	and	the	compressed	plaintext	are	then	used	as	inputs	to	
nacl.secretbox,	which	implements	the	XSalsa20	algorithm.	Additional	parameters	are	
listed	below.	Notice	that	the	key-stretching	feature	of	the	SJCL.encrypt	function,	based	
on	the	PBKDF2	algorithm,	is	reduced	to	the	minimum	allowed	since	there	is	already	a	
full	key-stretching	step	right	before	encryption.	

The	nonce	or	initialization	vector	is	used	to	make	sure	that	not	two	messages	are	encrypted	
with	the	same	key.	It	is	combined	with	the	stretched	key	before	this	is	used	for	encryption.	
Normally	120	bits	(20	base64	characters)	are	used	for	NaCl	nonce.	

To	decrypt	a	message	encrypted	with	a	symmetric	key,	the	process	is	this:	

1. The	tags	are	stripped	and	the	message	is	split	into	its	constituents,	in	this	order:	
sender’s	public	key	(if	any),	mode-identifying	character,	nonce,	ciphertext.	The	modes	
are	distinguished	by	the	first	character	after	the	sender’s	50-character	public	key,	
according	to	this	scheme:	
	

Initial	character(s)	 Mode	
g	 Invitation	(symmetric)	
S	 Signed	(asymmetric)	
O	 Read-once	mode	(asymmetric)	
k	 directory	item	(symmetric)	

2. Assuming	that	the	key	to	the	cipher	text	is	already	known	(it	will	take	additional	steps,	
explained	below,	if	this	is	not	the	case),	the	key	is	analyzed	for	strength	and	stretched	
with	SCRYPT	as	described	above	for	the	encryption	process.	The	stretched	key	should	be	
the	same	as	the	stretched	key	obtained	in	the	encryption	process.	

3. Then	the	decrypt	function	is	called,	using	the	same	fixed	parameters	as	for	encryption,	
plus	the	nonce	and	cipher	text	extracted	from	the	full	encrypted	message.	

4. Unless	the	result	contains	an	encoded	file	(this	can	be	easily	detected),	the	LZ-String	
decompression	algorithm	is	called	at	this	point.	The	result	is	finally	displayed	along	with	
a	confirmation	message	in	a	special	area	of	the	interface.	If	the	decryption	process	fails	
(usually	because	the	key	entered	is	incorrect),	a	different	message	is	displayed	to	warn	
the	user.	Errors	are	caught	and	sent	to	a	function	that	displays	a	message	telling	the	
user	what	has	failed,	and	possibly	asks	for	specific	data	that	might	be	missing.	

Asymmetric	encryption	and	decryption	adds	a	few	steps	to	this	process,	which	are	different	
depending	on	the	asymmetric	mode	selected	by	the	user	and	are	explained	later.	In	essence,	the	
plaintext	is	still	encrypted	using	the	symmetric	cipher	and	a	symmetric	key,	but	this	symmetric	
key	is	obtained	by	combining	the	recipient’s	public	key	and	a	private	key	(the	recipient’s	private	
key	with	a	public	key,	for	decryption)	in	different	ways.	But	first	we	must	discuss	how	the	
private	key-public	key	pairs	are	generated	in	PassLok.	

Public	key	generation	

PassLok	does	not	generate	private	keys	for	the	user.	Instead,	it	accepts	as	a	valid	Password,	
from	which	the	private	key	is	deterministically	derived,	whatever	string	the	user	wants	to	use	as	
such.	This	is	so	that	the	user	may	remember	the	Password	and	not	feel	tempted	to	write	it	
down,	which	might	lead	to	its	being	compromised.	Because	many	users	tend	to	choose	weak	
Passwords,	PassLok	applies	a	variable	amount	of	SCRYPT	key	stretching,	based	on	measured	
Password	strength	as	discussed	earlier,	before	it	actually	uses	it	in	any	computation.	This	has	
two	advantages	over	restricting	the	allowed	key	space:	

1. If	the	user	chooses	a	weak	Password,	the	program	will	run	noticeably	more	slowly	than	
with	a	strong	one,	because	of	the	extra	computations	added	by	SCRYPT.	This	encourages	
users	to	choose	strong	Passwords	that	will	be	harder	to	guess.	

2. All	weak	user	Passwords	remain	as	valid	choices	in	the	key	space.	A	hacker	wishing	to	
guess	a	private	key	by	generating	public	keys	for	entries	in	a	special	dictionary,	for	
instance,	will	be	forced	to	do	a	lot	of	expensive	computations	to	test	the	weak	
Passwords,	or	risk	missing	those	altogether.	

NaCl	uses	private	and	public	keys	in	a	UInt8	array	format,	consisting	of	a	fixed	series	of	numbers	
from	0	to	255.	The	user-supplied	Password	is	first	subjected	to	a	variable	number	of	rounds	of	
SCRYPT	stretching,	as	described	above,	resulting	in	a	32-byte	stretched	private	key.	An	optional	
salt	value	is	added	at	each	round	in	order	to	prevent	the	possibility	of	a	powerful	adversary	
generating	a	rainbow	table	containing	the	public	keys	matching	all	entries	in	a	large	dictionary	
as	private	keys.	This	salt	value	is	usually	the	user’s	email	address,	which	can	be	extracted	easily	
from	the	email	program.	In	Outlook,	however,	the	DOM	does	not	contain	users’	email	addresses	
but	rather	user	names	(addresses	replace	those	in	the	server),	and	so	those	are	used	instead.	

NaCl	involves	two	kinds	of	private-public	key	pairs:	on	Curve25519	for	performing	Diffie-
Hellman	exchanges,	or	on	the	Ed25519	curve	for	digital	signatures.	PassLok	Privacy,	which	
includes	signature	functions	in	addition	to	encryption,	uses	the	stretched	user	key	as	seed	for	an	
Ed25519	private	key,	and	so	PassLok	for	Email	follows	the	same	process	in	order	to	maintain	
compatibility	with	the	standalone	app.	The	key	is	made	with	this	call	in	TweetNaCl:	

KeySgn	=	nacl.sign.keyPair.fromSeed(stretchedUserKey).secretKey	 (64	bytes)	

From	this,	the	matching	public	key	(called	a	“Lock”	in	PassLok	Privacy	parlance)	is	made	with	this	
call:	

Lock	=	nacl.sign.keyPair.fromSecretKey(KeySgn).publicKey	 	 (32	bytes)	

And	is	immediately	encoded	in	base64	for	display	or	storage.	Now,	this	is	the	key	pair	used	for	
digital	signatures.	In	order	to	do	asymmetric	encryption,	a	Diffie-Hellman	key	pair	is	needed.	
This	pair	derives	from	the	first,	by	performing	a	change	of	variable	from	the	Ed25519	curve	to	
Curve25519.	The	calls	involved	are:	

KeyDH	=	ed2curve.convertSecretKey(KeySgn)						for	the	secret	key	(32	bytes)	

LockDH	=	ed2curve.convertPublicKey(Lock)							 for	the	public	key	(32	bytes)	

The	functions	ed2curve.etc,	although	not	included	in	NaCl	itself,	were	added	by	the	author	of	
the	JavaScript	implementation	of	NaCl	and	are	available	from	the	same	GitHub	site.	

At	the	end	of	this	process,	the	public	key	can	be	displayed.	This	is	what	a	typical	PassLok	Privacy	
public	key,	also	known	as	a	Lock,	looks	like:	

PL23lok==FWDpcOXA0AuW0SC/JLc2NMngivPM9zuDuY923UMqhkc==PL23lok	

The	reader	hopefully	can	appreciate	how	much	more	compact	this	is,	even	with	the	error-
correction	code	added	at	the	end	in	the	first	example,	than	the	typical	PGP	public	key.	

When	a	Lock	is	to	be	used	for	verifying	a	signature,	the	only	conversion	needed	consists	in	
decoding	the	base64	characters	back	to	a	Uint8	byte	array.	If	it	is	going	to	serve	as	public	key	for	
a	Diffie-Hellman	exchange,	it	is	first	passed	through	the	ed2curve.convertPublicKey	function	in	

order	to	obtain	its	Curve25519	equivalent.	This	step	is	skipped	for	ephemeral	keys	(described	
later),	which	are	generated	from	the	start	on	Curve25519	rather	than	on	Ed25519.	

In	PassLok	for	Email	(and	also	optionally	in	PassLok	Privacy),	users’	public	keys	are	displayed	in	
base36	format	rather	than	in	base64,	after	a	straightforward	base	conversion.	This	way,	there	is	
no	confusion	between	capital	and	small	case	characters,	thus	facilitating	the	task	of	reading	it	
aloud	for	authentication	purposes.	The	base36	alphabet	used	in	PassLok	includes	digits	0	to	9	
and	small	case	letters	a	to	z,	except	for	using	capital	L	instead	of	small	case	l,	which	might	be	
confused	for	digit	1.	Thus,	a	256-bit	public	key	ends	up	being	represented	as	a	string	of	50	
base36	characters.	This	string	is	placed	at	the	start	of	any	output	string,	except	data	meant	for	
storage.	

Asymmetric	encryption	and	decryption	
	

PassLok	for	Email	implements	two	main	modes	of	asymmetric	encryption,	which	are	triggered	in	
accord	to	a	radio	button	setting	on	the	interface:	

1. Signed.	The	recipient	must	use	his/her	private	key	and	the	sender’s	public	key,	or	
otherwise	decryption	fails.	This	is	equivalent	to	applying	a	digital	signature	to	the	
plaintext	before	encryption,	hence	the	name.	

2. Read-once:	The	private	key/public	key	pair	changes	for	each	message	exchanged	
between	a	given	sender-recipient	pair,	so	that	someone	intercepting	the	encrypted	
messages	would	be	unable	to	decrypt	it	after	the	exchange	is	finished,	even	if	he/she/it	
manages	to	obtain	the	permanent	private	keys	of	the	participants.	The	messages	also	
enjoy	some	deniability	(except	for	having	been	sent	from	a	particular	email	account	;-),	
since	it	becomes	impossible	to	detect	who	the	sender	or	the	recipient	is,	even	if	
permanent	private	keys	are	compromised.	

There	is	one	additional	variant	of	Signed	mode,	also	selectable	by	a	radio	button.	Chat	
invitations	are	especially	encrypted	messages	which	will	automatically	open	a	secure	real-time	
chat	session	as	soon	as	they	are	decrypted.	The	chat	takes	place	within	a	sandboxed	frame,	so	
that	the	main	PassLok	code	and	its	data	remain	unaffected	by	anything	happening	in	the	chat.	

All	modes	admit	multiple	recipients	whose	identities	remain	unknown	to	one	another	(except,	
once	again,	for	the	addresses	visible	in	the	email	page	;-).	We	proceed	now	to	explain	how	the	
two	modes	of	asymmetric	encryption	are	put	together.	

Signed	encryption/decryption	

Signed	mode	encryption	proceeds	this	way:	

1. Unless	it	contains	an	encoded	file,	the	message	is	compressed	with	LZ-String	and	
encrypted	with	XSalsa20,	using	a	15-byte	random	nonce	and	a	random	256-bit	message	
key.	Unlike	in	PassLok	Privacy,	no	Decoy	message	and	no	padding	are	generated.	The	
resulting	cipher	text	is	stored	in	memory.	

2. For	each	recipient,	the	following	is	done:	
a. The	sender’s	stretched	private	key	was	obtained	by	stretching	the	user	

Password,	followed	by	a	ed2curve.convertSecretKey	call	when	PassLok	for	Email	
first	loaded,	and	is	retained	in	memory.	

b. The	recipient’s	Curve25519	public	key	is	obtained	from	his/her	stored	Lock	by	
means	of	a	ed2curve.convertPublicKey	call,	preceded	by	decoding	from	base64.	

c. Both	keys	are	combined	into	a	DH	shared	secret	by	means	of	this	operation:	
sharedSecret	=	nacl.box.before(publicKey,privateKey)	

d. Take	the	recipient’s	base64	Lock	and	encrypt	it	with	XSalsa20,	using	the	main	
message’s	nonce,	and	the	recently	calculated	shared	secret	as	encryption	key.	
The	first	8	bytes	of	the	resulting	cipher	text,	encoded	in	base64,	are	this	
recipient’s	“ID	tag.”	

e. Take	the	main	message	key	and	encrypt	it	with	XSalsa20,	using	the	same	
parameters	as	in	the	step	above	and	the	same	shared	secret	as	encryption	key.	
Put	the	resulting	cipher	text	in	memory.	

3. Then	PassLok	concatenates	the	byte	arrays	obtained	in	this	way:	byte	of	decimal	value	
72	(will	cause	the	result	to	begin	with	“S”	in	base64	encoding),	number	of	recipients	(1	
to	255),	15-byte	nonce,	then	a	255-byte	padding	(more	on	this	below),	then	for	each	
recipient	the	iD	tag	followed	by	the	message	key	encrypted	with	the	recipient’s	shared	
secret,	and	then	finally	the	message	cipher	text.	Then	the	result	is	encoded	as	base64	
characters.	

4. Finally,	PassLok	prepends	the	sender’s	Lock	(public	key)	in	base36	encoding,	followed	by	
six	slashes	‘//////’	so	it	is	visually	separated	from	the	encrypted	message,	and	brackets	
the	whole	thing	by	readable	single-line	tags	so	users	can	identify	the	kind	of	item	this	is.	
The	body	of	the	encrypted	message	is	divided	into	lines	of	equal	length	and	displayed.	

Decryption	is	done	this	way:	

1. Strip	the	initial	and	final	tags	and	retrieve	the	initial	sender’s	base36	Lock,	then	decode	
the	rest	back	to	bytes	and	split	the	result	into	its	components.	The	components	are:	
mode	indicator,	number	of	recipients,	nonce,	then	a	series	of	ID	tags	and	encrypted	
message	keys	in	alternation,	and	finally	the	cipher	text.	The	mode	indicator	(before	
decoding)	should	be	the	character	“S”,	which	means	it	is	an	asymmetric	Signed	
message,	which	triggers	the	correct	decryption	algorithm	without	user	intervention.	

2. Now	PassLok	converts	the	sender’s	Lock	back	to	base64	encoding	and	looks	for	it	in	the	
stored	database,	which	is	classified	by	sender’s	email.	If	it	is	absent	of	different	from	
what	was	previously	stored,	PassLok	stores	the	new	string	after	asking	the	user	to	
accept	the	change.	Thus	key	exchange	has	taken	place	with	a	minimum	of	
inconvenience.	

3. The	app	now	finds	the	instance	of	the	message	key	that	has	been	encrypted	for	him/her	
to	decrypt.	This	item	follows	immediately	after	an	ID	tag	that	is	generated	this	way:	

a. The	user’s	DH	private	key	should	have	been	in	memory	from	the	moment	
PassLok	loaded.	If	not,	generate	it	again	from	the	user’s	Key	and	salt	string,	
through	the	key-stretching	process	described	earlier,	followed	by	conversion	to	
Curve25519.	

b. Take	the	user’s	own	base64	Lock,	which	should	also	exist	in	memory.	If	not,	
PassLok	generates	it	again	from	the	user’s	signing	private	key.		

c. Take	the	sender’s	Lock,	which	is	supplied	in	a	special	input	field.	If	this	is	
unavailable,	PassLok	stops	and	directs	the	user	to	do	so.	Then	make	its	
Curve25519	counterpart	with	ed2curve.convertPublicKey.	

d. Combine	the	DH	private	key	with	the	sender’s	DH	public	key	by:	
sharedSecret	=	nacl.box.before(publicKey,privateKey)	
Because	of	the	commutative	property	of	scalar	multiplication	over	elliptic	curve	
fields,	the	result	should	be	identical	to	the	result	obtained	by	the	sender	in	step	
2c	above.	

e. This	is	the	shared	secret	held	in	common	by	the	sender	and	the	user.	Now	use	it	
as	key	to	encrypt	the	user’s	public	key	with	XSalsa20,	with	the	same	nonce	as	
the	main	message,	and	the	usual	additional	parameters.	The	first	8	bytes	of	the	
resulting	cipher	text	constitute	the	“ID	tag”	for	this	message.	

4. Search	for	the	ID	tag	among	the	components	of	the	message.	If	no	exact	match	is	found,	
this	could	have	been	due	to	the	user	having	changed	his/her	Password	since	the	last	
communication	with	the	sender,	so	PassLok	displays	a	dialog	requesting	the	previous	
Password.	If	the	ID	tag	derived	from	this	one	cannot	be	found	either,	PassLok	displays	a	
warning	saying	“there	is	no	message	for	you”	and	stops.	If	there	is	a	match,	the	
component	immediately	following	it	is	the	encrypted	message	key.	

5. Take	the	encrypted	message	key	and	decrypt	it	with	XSalsa20,	using	the	shared	secret	as	
key,	and	the	nonce	already	recorded.	The	result,	if	successful,	is	the	message	key.	If	
unsuccessful,	display	a	warning.	

6. Take	the	cipher	text	and	decrypt	it	with	XSalsa20,	using	the	decrypted	message	key,	and	
the	same	nonce.	If	successful,	the	result	is	the	compressed	plaintext.	If	unsuccessful,	
display	a	warning.	The	final	step	is	to	decompress	the	plaintext	with	LZ-String	if	it	does	
not	contain	an	encoded	file.	

The	overall	process	is	not	very	different	from	the	way	other	programs,	such	as	PGP,	handle	
multiple	asymmetric	encryption:	the	plaintext	is	symmetric-encrypted	with	a	random	message	
key,	and	then	the	message	key	is	asymmetric-encrypted	for	each	recipient,	but	there	are	some	
features	proper	to	PassLok:	

1. Recipients	can	identify	only	the	message	keys	that	have	been	encrypted	for	each	of	
them,	so	that	identities	of	the	other	recipients	remain	unknown	as	far	as	the	message	
itself	goes.	It	is	tempting	to	use	a	part	of	their	unencrypted	public	keys	as	ID	tags,	but	
then	the	identities	of	the	recipients	would	be	revealed	to	outsiders.	This	is	why	the	ID	
tags	are	based	on	encrypted	public	keys,	and	the	encryption	keys	for	this	are	the	same	
that	would	decrypt	the	corresponding	message	key.	Doing	this	does	not	add	much	
computational	effort	since	the	most	expensive	step	is	the	elliptic	curve	multiplication	
needed	for	the	Diffie-Hellman	exchange,	and	this	has	to	be	performed	regardless.	The	ID	
tag	for	a	given	recipient	is	different	in	each	message	since	it	depends	on	the	message’s	
nonce	value.	Now,	the	identities	of	the	correspondents	are	likely	revealed	on	the	email	
metadata,	so	all	this	effort	seems	rather	useless	in	PassLok	for	Email.	It	is	retained,	
however,	in	order	to	maintain	compatibility	with	PassLok	Privacy,	whose	output	is	
meant	to	be	posted	in	public	forums	without	leaking	recipients’	identities.	

2. The	sender’s	identity	cannot	be	obtained	from	the	message,	either,	until	some	parts	of	
the	message	are	successfully	decrypted.	The	only	way	anybody	can	identify	the	sender	
(other	than	from	the	email	metadata)	is	by	successfully	making	at	least	one	of	the	ID	
tags	included	with	the	message,	which	implies	making	a	shared	secret	by	combining	the	
sender’s	public	key	and	the	recipient’s	private	key.	No	one	who	is	not	in	possession	of	
one	of	these	private	keys	can	make	an	ID	tag	that	will	be	found	in	the	complete	message	
string.	Those	who	do	get	a	first	confirmation	of	the	sender’s	identity	when	the	ID	tag	is	
found,	and	again	when	the	message	key,	which	is	encrypted	with	the	same	shared	
secret	mentioned	above,	is	successfully	decrypted.	Again,	this	seems	spurious	for	
emails,	but	it	is	retained	for	compatibility	with	PassLok	Privacy.	

3. Unlike	in	other	cryptosystems,	where	“signed”	messages	involve	a	digital	signature	
followed	by	anonymous	asymmetric	encryption,	so	that	signature	verification	is	carried	
out	after	decryption,	in	PassLok	both	steps	are	combined	into	one,	which	speeds	up	the	
process	substantially.	The	sender	authentication	instrument	is	his/her	public	key,	just	as	
in	signature	verification,	but	it	is	used	in	the	decryption	itself.	If	the	sender’s	public	key	
is	incorrect,	the	shared	secret	obtained	in	step	2d	above	will	be	different	from	the	one	
used	by	the	sender,	and	the	resulting	ID	tag	will	also	be	different,	leading	to	no	match	
when	the	ID	tag	is	searched.	

Anonymous	encryption/decryption	(not	used	by	PassLok	for	Email)	

PassLok	for	Email	does	not	have	an	Anonymous	encryption	mode,	but	PassLok	Privacy	does.	
Since	its	construction	seems	to	understand	Read-once	mode,	it	is	explained	here	even	though	it	
is	not	present	in	the	app.	In	PassLok,	the	term	“Anonymous”	is	used	in	the	general	sense	of	not	
knowing	the	identity	of	the	originator	of	a	message,	rather	than	the	restricted	sense	used	in	the	
digital	world	to	mean	that	one	cannot	be	tracked	over	a	network.	A	reader	well	versed	in	
cryptography	might	prefer	to	refer	to	this	mode	as	“deniable”	rather	than	Anonymous,	but	we’ll	
keep	using	the	latter	term	for	the	sake	of	consistency	with	the	interface.	

The	process	followed	for	this	mode	is	very	similar	to	that	of	the	Signed	mode,	but	there	is	one	
fundamental	difference.	In	Anonymous	mode,	the	sender	uses	an	ephemeral,	random	private	
key,	rather	than	his/her	permanent	private	key.	From	this	random	private	key,	an	ephemeral	
public	key	is	derived	with	the	command	nacl.box.keyPair.fromSecretKey(privateKey).publicKey.	
Since	the	random	key	already	has	a	256-bit	entropy,	SCRYPT	stretching	is	not	used.	The	
ephemeral	public	key,	encoded	in	base64,	is	attached	to	the	outgoing	message	immediately	
after	the	padding.		

Upon	decryption,	once	Anonymous	mode	is	detected	by	the	presence	of	the	“A”	character	
immediately	behind	the	initial	tag,	PassLok	knows	that	an	ephemeral	public	key	follows,	and	
extracts	the	components	accordingly.	The	shared	secret	is	calculated	from	the	user’s	permanent	
private	key,	which	was	calculated	when	PassLok	loaded,	and	the	ephemeral	public	key,	rather	
than	the	sender’s	permanent	public	key.	There	is	no	point	in	storing	the	resulting	shared	secret	

since	it	will	be	different	next	time.	Other	than	this,	the	process	is	identical	to	the	one	described	
for	Signed	mode.	

PassLok’s	Anonymous	asymmetric	encryption	bears	some	similarities	to	the	ElGamal	encryption	
algorithm.	In	both	cases	a	random	value	is	used	as	private	key	and	then	the	Diffie-Hellman	
public	key	is	derived	from	it	and	sent	along	with	the	encrypted	message.	But	in	ElGamal	
encryption	the	plaintext	(or,	as	in	PassLok,	the	symmetric	message	key)	is	operated	on	by	the	
shared	secret	using	large-integer	multiplication	or	elliptic	curve	addition,	while	in	PassLok	the	
shared	secret	is	used	to	encrypt	it	with	the	symmetric	cipher.		

Observe	that	the	sender’s	permanent	private	and	public	keys	are	never	involved	in	the	process.	
There	is	no	way	to	know	the	sender’s	identity	from	the	encrypted	message,	and	this	is	why	the	
mode	is	termed	“Anonymous.”	When	the	message	is	decrypted,	the	recipient	does	not	have	to	
supply	the	sender’s	“public	key,”	since	this	is	already	included	as	a	component	of	the	full	
encrypted	message.	ID	tags	and	encrypted	message	keys	are	encrypted	by	the	shared	secret	
resulting	from	the	DH	combination	of	the	recipient’s	permanent	public	key	and	the	ephemeral	
private	key.	On	the	receiving	end,	they	are	encrypted	with	the	shared	secret	resulting	from	
combining	the	recipient’s	private	key	and	the	ephemeral	public	key	that	accompanies	the	
message,	which	is	the	same	for	all	recipients.	As	in	Signed	mode,	the	resulting	shared	secret	is	
the	same	computed	either	way.	

Even	though	the	ephemeral	private	key	used	is	the	same	for	all	recipients,	there	is	no	
interference	between	them	since	the	shared	secrets	that	actually	encrypt	the	different	instances	
of	the	message	key	and	are	used	to	make	the	ID	tags	are	also	based	on	their	respective	
permanent	public	keys,	which	presumably	are	all	different,	so	that	the	respective	shared	secrets	
are	also	all	different.	

Read-once	encryption	and	decryption,	mode	1	

Read-once	mode	1	is	one	step	beyond	Anonymous	mode.	Let	us	involve	two	correspondents,	
Alice	and	Bob,	in	order	to	understand	better	how	this	works.	Alice	has	just	sent	an	Anonymous	
encrypted	message	to	Bob,	who	wishes	to	reply.	Rather	than	replying	using	Alice’s	permanent	
public	key,	Bob	uses	the	ephemeral	public	key	that	Alice	sent	along	with	her	last	encrypted	
message.	Alice	will	be	able	to	decrypt	it	if	she	still	has	the	ephemeral	private	key	that	she	
generated	for	that	last	message.	For	her	reply	to	Bob’s	new	message,	Alice	uses	the	ephemeral	
public	key	that	Bob	sent	along	with	his	message,	and	generates	a	new	random	private	key	and	
its	matching	public	key,	which	she	again	sends	along	with	her	new	reply.	Thus	a	sort	of	ping-
pong	game	takes	place	between	Alice	and	Bob,	where	each	new	message	encrypted	implies	
generating	a	new	ephemeral	private	key	and	its	matching	public	key,	as	in	Anonymous	mode,	
but	which	will	be	used	again	for	the	reply,	unlike	in	Anonymous	mode.	

Every	time	one	of	them	receives	a	message	from	the	other,	the	message	includes	a	new	
ephemeral	public	key,	which	will	be	used	for	the	reply	instead	of	the	previous	one,	which	is	
overwritten.	Likewise,	every	time	a	reply	is	made,	a	new	private	key	is	generated	and	the	

previous	one	overwritten.	Since	subsequent	messages	are	encrypted	with	shared	secrets	
resulting	from	combining	each	time	a	different	private	key	or	public	key,	once	either	of	them	is	
overwritten	the	message	can	no	longer	be	decrypted.	Therefore,	perfect	forward	secrecy	of	
previous	messages	is	achieved	as	more	messages	travel	back	and	forth	between	the	
correspondents,	since	they	were	encrypted	with	ephemeral	keys	that	have	been	overwritten	on	
both	ends	of	the	conversation.	

Since	PassLok	is	meant	to	supplement	asynchronous	communications,	Read-once	mode	requires	
storage.	Alice	wants	to	be	able	to	decrypt	Bob’s	reply,	which	will	be	encrypted	using	the	
ephemeral	public	key	she	sent	out	with	her	previous	message,	so	she	needs	to	store	the	
matching	private	key.	She	also	needs	to	store	the	ephemeral	public	key	that	Bob	sent,	in	order	
to	reply	to	him.	In	PassLok,	a	local	directory	is	set	up	where	data	pertaining	to	each	particular	
recipient	(or	sender)	is	stored.	It	takes	the	form	of	a	JavaScript	array.	In	the	case	of	the	array	
pertaining	to	Bob,	stored	in	Alice’s	computer,	the	contents	are	the	following,	where	those	
marked	as	“encrypted”	on	the	table	are	encrypted	with	Alice’s	permanent	Key	(SCRYPT-
stretched	with	the	user’s	email	address	as	salt)	before	they	are	stored:	

Index	 contents	
0	 Bob’s	public	key	(unencrypted)	
2	 Ephemeral	private	key	last	used	to	encrypt	for	Bob	(encrypted)	
3	 Ephemeral	public	key	from	Bob’s	last	message	(encrypted)	
4	 Boolean	flag	indicating	whose	turn	it	is	to	encrypt	(unencrypted)	
	

In	order	to	encrypt	a	Read-once	message	for	Bob,	or	decrypt	a	Read-once	message	from	Bob,	
Alice	must	point	PassLok	to	this	array	so	the	appropriate	strings	can	be	read	or	stored.	It	follows	
that	users	must	select	the	appropriate	correspondent	both	for	encryption	and	for	decryption,	as	
in	Signed	mode.	This	forces	a	design	choice.	Recipients	cannot	be	sure	of	the	identity	of	a	Read-
once	message	sender	since	the	ephemeral	key	pair	involved	in	making	it	is	randomly	chosen,	as	
in	Anonymous	mode,	so	it	would	seem	that	users	should	deal	with	Read-once	messages	very	
much	like	they	would	with	Anonymous	messages.	But	the	fact	that	they	must	identify	the	
sender	so	the	new	public	key	can	be	stored	in	its	proper	slot	makes	it	feel	to	the	user	like	some	
sort	of	authentication	is	taking	place.	In	fact,	the	identity	of	the	sender	is	not	being	verified.	

Further,	consider	this:	if	the	same	ephemeral	key	pair	is	used	for	all	the	recipients	of	a	given	
message,	it	would	be	possible	for	any	of	them	(or	a	third	party	who	gains	access	to	the	public	
key	sent	along	with	the	message)	to	impersonate	any	of	the	other	recipients	when	replying	to	
the	sender.	He/she/it	only	needs	to	come	up	with	a	new	ephemeral	key	pair,	use	the	private	key	
in	combination	with	the	previous	sender’s	public	key	to	encrypt	the	message,	and	send	the	new	
public	key	along	with	the	message.	

Users	naturally	would	be	confused	about	identifying	senders	whose	identity	in	fact	cannot	be	
verified,	and	might	end	up	placing	trust	where	it	shouldn’t	be	placed.	Therefore,	we	decided	to	
implement	Read-once	mode	in	a	way	that	senders	actually	are	subject	to	authentication.	We	did	

this	by	using	a	different	ephemeral	key	pair	for	each	recipient	of	a	given	Read-once	message.	
Each	ephemeral	private	key	is	locally	stored,	after	encoding	as	base64,	at	index	1	of	the	array	
assigned	to	its	recipient,	and	the	matching	public	key	is	encrypted	in	the	same	way	as	ID	tags	
and	message	key,	and	added	to	the	material	following	that	particular	recipient’s	ID	tag	in	the	full	
encrypted	message.	

This	ID	tag,	like	the	items	immediately	following	it,	cannot	be	encrypted	with	the	shared	secret	
resulting	from	combining	the	recipient’s	previously	sent	public	key	and	the	new	ephemeral	
private	key,	since	the	recipient	would	need	the	matching	public	key	to	decrypt	that	same	public	
key	out	of	the	message.	At	this	point	we	have	several	options	for	encrypting	the	ID	tag	and	the	
new	ephemeral	public	key.	The	simplest	one	is	to	use	the	permanent	shared	secret,	resulting	
from	the	combination	of	the	sender’s	permanent	private	key	and	the	recipient’s	permanent	
public	key	is	used	(the	actual	message	key	would	still	be	encrypted	with	the	combination	of	the	
recipient’s	stored	ephemeral	public	key	and	the	sender’s	new	ephemeral	private	key	for	this	
particular	recipient).	But	this	choice	would	make	the	sender	and	recipient	identifiable	from	the	
ID	tag	if	their	permanent	secret	keys	are	compromised	in	the	future	(in	technical	words,	the	
message	would	lack	“deniability”).	

A	better	choice,	which	does	not	require	additional	storage,	is	to	encrypt	the	ID	tag	and	new	
ephemeral	public	key	with	the	shared	secret	resulting	from	combining	the	sender’s	permanent	
private	key	and	the	recipient’s	most	recent	ephemeral	public	key,	if	there	is	one	(otherwise	the	
recipient’s	permanent	public	key	is	used).	Then	the	recipient	can	compute	the	same	shared	key	
from	his/her	most	recent	ephemeral	private	key	if	there	is	one	(otherwise,	the	permanent	
private	key)	and	the	sender’s	permanent	public	key.	This	scheme	still	does	not	ensure	deniability	
of	the	messages	if	all	of	them	from	the	first	one	are	available	to	an	attacker,	since	then	he/she/it	
would	be	able	to	obtain	all	the	ephemeral	public	keys	in	succession	and	thus	the	ID	tags	could	
be	reproduced,	but	if	just	one	of	the	messages	is	not	recorded	then	the	whole	chain	from	that	
spot	onwards	becomes	deniable.	

When	decrypting	the	message,	the	recipient	first	computes	the	ID	tag,	which	is	very	much	like	
the	ID	tag	computed	in	Signed	mode.	This	provides	sender	authentication	since	the	ID	tag	can	
only	be	made	successfully	by	someone	possessing	the	sender’s	permanent	private	key	(or	the	
recipient’s	permanent	private	key,	which	would	be	a	much	more	serious	problem	by	itself).	
Once	the	ID	tag	is	found	in	the	full	encrypted	message,	the	encrypted	ephemeral	public	key	is	
found,	decrypted	with	the	same	key	used	to	make	the	ID	tag,	and	stored	at	index	2	of	the	array	
assigned	to	that	sender	(actually,	storage	happens	at	the	end	of	the	process,	to	avoid	corrupting	
the	stored	keys	with	material	from	messages	that	fail	to	decrypt).	Then	the	ephemeral	shared	
secret	is	made	by	combining	this	public	key	and	the	private	key	for	this	sender,	which	was	
stored	when	the	recipient	last	encrypted	something	for	this	sender,	and	the	message	key	is	
decrypted.	Finally,	the	plaintext	is	obtained	by	decrypting	the	cipher	text	with	the	message	key.	
All	symmetric	encryptions	and	decryptions	are	performed	with	the	same	nonce	and	the	same	
optional	parameters	listed	above,	which	represents	an	insignificant	risk	since	the	plaintext	
encrypted	is	random-like	and	thus	conventional	attacks	on	re-used	nonces	would	fail.	

Whenever	a	required	ephemeral	key	(private	or	public)	is	not	found	in	storage,	the	
corresponding	permanent	key	is	used	instead.	For	instance,	If	Alice	is	initiating	the	first	Read-
once	message	to	Bob,	with	no	previous	history	of	Read-once	messages	between	them,	she	will	
use	Bob’s	permanent	DH	public	key,	rather	than	an	ephemeral	key	that	doesn’t	exist,	and	an	
ephemeral	DH	private	key	that	she	generates	just	then.	When	Bob	replies,	he	will	use	a	newly	
generated	private	key	and	the	public	key	that	Alice	sent	along	with	her	message,	thus	
populating	both	ephemeral	strings	on	his	side.	Alice	will	fill	the	second	ephemeral	slot	as	soon	
as	she	decrypts	Bob’s	message,	and	from	then	on	they	will	use	exclusively	ephemeral	keys,	
changed	at	every	exchange	back	and	forth,	to	communicate	with	each	other.	

Here	is	a	step	by	step	diagram	of	a	series	of	Read-once	exchanges	between	Alice	and	Bob.	Small	
case	single	letters	are	private	keys,	capitals	are	matching	public	keys.	Both	are	permanent	if	
unnumbered,	ephemeral	if	numbered.	Parentheses	denote	symmetric	encryption	using	the	
Diffie-Hellman	combination	of	the	private	and	public	key	inside	the	parentheses	as	key.	All	
exchanges	are	recorded	after	the	message	is	decrypted	by	the	recipient.	The	permanent	private	
keys,	a	and	b,	are	not	really	stored,	but	rather	input	anew	for	each	message.	Some	slots	are	not	
immediately	filled;	when	this	happens,	the	word	“null”	is	used	to	represent	the	empty	slot.	

Exchanges	 Alice	storage	 Sent	by	Alice	 Bob	storage	 Sent	by	Bob	
1st	ms.	from	
Alice	

a,B,a1,null	 A1(a,B),ms1(a1,B)	 b,A,null,A1	 	

1st	ms.	from	
Bob	

a,B,a1,B1	 	 b,A,b1,A1	 B1(b,A1),ms2(b1,A1)	

2nd	ms.	from	
Alice	

a,B,a2,B1	 A2(a,B1),ms3(a2,B1)	 b,A,b1,A2	 	

2nd	ms.	from	
Bob	

a,B,a2,B2	 	 b,A,b2,A2	 B2(b,A2),ms4(b2,A2)	

	

The	first	message	from	Alice	can	only	be	decrypted	as	long	as	the	pairs	(a1,B)	or	(b,A1)	can	be	
collected.	After	the	second	message	from	Alice	is	decrypted,	the	ephemeral	keys	a1	and	A1	have	
been	overwritten	on	both	ends,	and	so	the	first	message	can	only	be	decrypted	if	the	secret	key	
b	is	compromised,	because	then	A1	can	be	decrypted.	The	second	message	is	encrypted	by	
ephemeral	keys	only,	and	thus	when	those	are	overwritten,	after	the	fourth	message	is	sent,	it	
can	no	longer	be	decrypted	even	if	the	permanent	private	keys,	a	and	b,	are	compromised	and	
access	is	gained	to	the	correspondents’	machines,	where	the	ephemeral	keys	are	stored	
symmetric-encrypted	by	their	respective	permanent	private	keys.	At	the	end	of	the	series,	both	
Alice	and	Bob	reset	their	storage	so	that	the	current	ephemeral	keys	are	deleted,	and	then	no	
message	in	the	series	can	be	decrypted	even	if	their	private	keys	are	compromised.	Even	more,	
in	order	to	be	able	to	associate	the	messages	with	correspondents	whose	permanent	private	
keys	have	been	revealed,	all	of	the	messages	exchanged	need	to	be	obtained.	

It	follows	that	correspondents	need	to	take	special	care	with	the	first	message,	which	initiates	
the	exchange,	since	this	one	does	not	possess	forward	secrecy	or	deniability.	After	this	first	

message,	however,	all	messages	have	both	properties,	and	can	be	posted	in	public	without	an	
attacker	ever	being	able	to	decrypt	them	or	even	link	them	to	the	correspondents.	

Read-once	conversations	can	also	be	established	between	correspondents	who	share	a	common	
symmetric	key,	rather	than	private/public	key	sets.	In	this	case,	a	public	key	is	made	from	that	
shared	secret,	taken	as	private	key,	when	the	recipient’s	permanent	public	key	is	needed	to	
encrypt	the	first	message	of	the	conversation.	ID	tags	and	ephemeral	public	keys	are	encrypted	
directly	with	the	shared	symmetric	key,	in	all	exchanges.	Ephemeral	keys	are	stored	exactly	as	
for	all	other	correspondents.	

Read-once	mode	2	

Observe	that,	every	time	one	of	the	correspondents	decrypts	a	new	message,	there	are	two	
ephemeral	public	keys	present	in	memory	(the	previous	one,	and	the	one	that	comes	with	the	
new	message)	before	the	old	key	is	overwritten.	This	offers	the	possibility	of	a	slight	variation:	
encrypt	the	message	not	with	the	new	ephemeral	private	key,	but	with	the	old	one,	if	there	is	
one.	Then	the	recipient	will	use	the	old	ephemeral	public	key,	if	there	is	one.	The	exchange	now	
looks	this	way	(differences	with	Read-once	mode	1	are	highlighted	in	boldface):	

Exchanges	 Alice	
storage	

Sent	by	Alice	 Bob	storage	 Sent	by	Bob	

1st	ms.	from	
Alice	

a,B,a1,	null	 A1(a,B),ms1(a1,B)	 b,A,null,A1	 	

1st	ms.	from	Bob	 a,B,a1,B1	 	 b,A,b1,A1	 B1(b,A1),ms2(b1,A1)	
2nd	ms.	from	
Alice	*	

a,B,a2,B1	 A2(a,B1),ms3(a1,B1)	 b,A,b1,A2	 	

2nd	ms.	from	Bob	 a,B,a2,B2	 	 b,A,b2,A2	 B2(b,A2),ms4(b1,A2)	
	

The	exchange	begins	as	in	Read-once	mode	1	but	by	the	third	message,	marked	with	an	asterisk,	
Read-once	mode	2	is	in	full	force.	This	message	is	encrypted	with	the	first	of	Alice’s	ephemeral	
key	pairs,	which	is	overwritten,	on	both	sides,	as	soon	as	that	message	is	acted	on:	immediately	
after	encryption,	on	Alice’s	side,	and	immediately	after	decryption,	on	Bob’s	side.	The	result	is	
that	Alice	cannot	decrypt	the	message	she	has	just	encrypted,	and	Bob	can	only	decrypt	it	once.	
This	is	akin	to	the	message	“self-destructing”	after	it	is	read.	There	is	no	need	to	reset	the	stored	
keys	when	the	conversation	is	over,	since	none	of	the	messages	(except	the	first	one)	can	be	
decrypted	even	if	the	permanent	private	keys	are	compromised.	The	second	and	third	messages	
exchanges	were	encrypted	with	the	same	shared	key,	but	since	this	was	based	on	ephemeral	
keys,	it	is	not	possible	to	decrypt	them	after	the	third	message	is	decrypted.	Deniability	is	
achieved	starting	with	the	third	message,	since	the	key	used	for	encrypting	new	ephemeral	
public	keys	and	ID	tags	is	the	same	after	that	point,	and	it	can	no	longer	be	reproduced.	

Since	the	stored	values	are	the	same	in	Read-once	mode	1	and	Read-once	mode	2,	they	can	be	
used	interchangeably	within	an	ongoing	conversation.	PassLok	detects	the	mode	used	in	a	given	
encrypted	item	from	a	single	byte	following	the	encrypted	ephemeral	public	key	and	performs	

the	decryption	accordingly.	Other	than	this,	the	structure	of	the	encrypted	item	is	the	same:	
mode	indicator,	number	of	recipients	unless	it	is	Short	mode,	15-byte	random	nonce	(9	bytes	in	
Short	mode),	75-byte	padding	(which	may	be	random	or	contain	a	hidden	message),	then	for	
each	recipient	the	ID	tag	plus	single-byte	type	indicator	plus	encrypted	message	key	plus	
encrypted	ephemeral	public	key,	ciphertext	(symmetric-encrypted	by	message	key).	Then	the	
sender’s	Lock	is	prepended	after	encoding	to	base64	and	tags	are	added	at	either	end.	

Read-once	mode	2	is	less	resistant	to	changes	in	the	back-and-forth	order	of	the	exchange	than	
mode	1.	In	mode	1	it	is	possible	to	decrypt	a	message	many	times	before	it	is	replied	to;	in	mode	
2,	the	decryption	fails	the	second	time	this	is	attempted.	In	mode	1	the	sender	can	re-encrypt	a	
new	message	for	the	same	recipient	immediately	after	encrypting	another;	so	long	as	the	first	
encrypted	message	is	not	sent,	the	exchange	remains	in	sync.	Even	if	several	messages	are	
encrypted	and	sent	without	waiting	for	a	reply,	the	recipient	can	read	them	all	and	the	exchange	
remains	in	sync	so	long	as	the	last	message	decrypted	is	the	last	message	encrypted.	In	mode	2,	
if	a	sender	changes	his/her	mind	about	the	message	he/she	just	encrypted,	encrypting	a	new	
message	would	throw	the	exchange	out	of	sync	so	that	no	subsequent	messages	would	be	
successfully	decrypted	on	the	other	end.	To	prevent	this,	PassLok	keeps	track	of	whose	turn	it	is	
to	encrypt	by	means	of	a	Boolean	flag	that	is	stored	along	with	the	ephemeral	keys.	

PassLok	defaults	to	Read-once	mode	2,	but	attempting	to	encrypt	out	of	turn	causes	PassLok	to	
use	mode	1	instead	of	mode	2.	After	a	reply	from	the	recipient	is	successfully	decrypted,	mode	2	
encryption	for	that	recipient	is	allowed	once	again.	Also,	the	ephemeral	private	key	will	not	
change	so	long	as	the	sender	is	encrypting	in	mode	1,	in	order	to	prevent	the	problem	discussed	
in	next	paragraph.	

Let’s	say	that	the	ephemeral	private	key	is	changed	for	every	outgoing	message,	whether	in	
mode	1	or	2,	and	let’s	further	imagine	that	Alice	sends	several	Read-once	messages	without	
waiting	for	a	reply	from	Bob.	These	would	be	encrypted	in	mode	1	after	the	first,	which	would	
be	in	mode	2.	Bob	will	be	able	to	decrypt	the	mode	1	messages	without	a	problem	because	the	
ephemeral	public	key	used	is	contained	in	each	message,	but	if	he	decrypts	them	in	reverse	
order	the	public	key	stored	won’t	be	the	last	one.	If	he	now	replies	to	Alice	in	Read-once	mode	
(mode	2,	in	this	case),	the	public	key	he	uses	(not	the	last	one	generated)	won’t	match	the	
private	key	Alice	has	stored	on	her	side	(the	last	one),	and	the	reply	will	fail	to	decrypt.	

Using	the	same	ephemeral	private	key	until	a	message	is	received	solves	this	problem,	at	a	small	
cost	to	forward	secrecy,	which	won’t	be	acquired	for	any	of	the	messages	using	the	same	
private	key	until	a	reply	is	made,	at	which	moment	all	of	them	become	forward-secret	at	the	
same	time.	There	are	other	scenarios	that	will	cause	the	conversation	to	go	out	of	sync.	In	order	
to	put	the	conversation	back	in	sync,	the	correspondents	must	clear	the	ephemeral	data	stored	
and	restart	the	process.	PassLok	makes	this	easier	by	adding	a	“reset”	flag	to	encrypted	
messages.	Let’s	say	Alice	clears	the	data	pertaining	to	her	exchange	with	Bob,	which	also	sets	
the	turn	flag	to	“reset”	rather	than	“lock”	or	“unlock”.	Next	time	Alice	sends	a	Read-once	
message	to	Bob,	a	reset	indicator	accompanies	the	encrypted	message	key,	rather	than	a	mode	

1	or	2	indicator.	When	Bob	decrypts	this	message,	PassLok	recognizes	that	a	reset	is	requested	
and	clears	the	ephemeral	data	pertaining	to	Alice	before	it	proceeds	with	the	rest	of	the	
decryption	process,	which	now	continues	as	if	this	was	the	first	time	Read-once	mode	has	been	
used	between	them.	

PassLok	forward	secrecy	vs.	OTR	and	Signal	

When	the	Read-once	mode	in	PassLok	was	designed,	the	author	was	unaware	that	the	Off-the-
Record	protocol	(OTR),	and	also	the	Signal	protocol,	use	a	very	similar	trick	in	order	to	achieve	
forward	secrecy.	OTR	is	closest	to	Read-once	mode	2,	since	the	shared	key	used	to	encrypt	a	
given	message	is	based	on	the	previously	received	public	key,	rather	than	on	the	one	
accompanying	the	message.	The	way	OTR	keeps	the	conversation	in	sync,	however,	is	different.	
If	Alice	wants	to	encrypt	a	new	message	for	Bob	before	receiving	Bob’s	reply	to	her	previous	
message,	OTR	reuses	the	ephemeral	private	key	that	was	used	in	that	previous	message,	and	
sends	out	the	same	ephemeral	public	key	along	with	it,	just	like	PassLok,	but	it	won’t	use	them	
to	encrypt	the	new	message	as	in	PassLok’s	mode	1.	Instead,	OTR	will	keep	encrypting	the	
messages	with	the	previous	ephemeral	key	(as	in	PassLok’s	mode	2),	which	won’t	be	erased	
from	storage	for	an	additional	cycle.	

This	requires	two	sets	of	ephemeral	keys	to	be	stored	at	any	given	time:	the	preferred	one,	and	
the	one	to	be	used	out	of	sync,	which	is	exactly	one	generation	older.	As	a	consequence,	
encrypted	messages	do	not	become	absolutely	un-decryptable	until	a	reply	has	been	encrypted	
and	received,	since	the	older	ephemeral	keys	linger	in	storage	for	an	extra	cycle.	In	other	words,	
they	might	as	well	have	been	encrypted	using	the	most	recent	public	key,	as	in	PassLok’s	Read-
once	mode,	as	far	as	forward	secrecy	goes.	

Perhaps	one	of	the	reasons	why	OTR	does	not	use	the	most	recent	public	key	is	that	others	
would	be	able	to	impersonate	the	recipient	if	they	also	got	that	public	key,	as	was	mentioned	
earlier.	While	PassLok	transmits	ephemeral	public	keys	in	encrypted	form,	OTR	transmits	them	
in	plaintext,	so	that	using	the	most	recent	public	key	would	be	insecure.	

PassLok	can	somehow	get	around	the	sync	problem	because	it	is	not	specifically	designed	for	
instant	messaging	like	OTR.	A	PassLok	user	can	see	what	kind	of	forward	secrecy	a	given	
message	has,	and	act	accordingly,	whereas	an	OTR	user	most	likely	would	not	get	a	visual	
indication	since	everything	is	handled	automatically	by	the	instant	messaging	program.	This	
being	the	case,	OTR	cannot	afford	to	use	several	types	of	forward	secrecy	without	
compromising	this	property	for	the	whole	conversation.	On	the	other	hand,	a	PassLok	user	that	
wishes	to	send	two	Read-once	messages	in	a	row	switches	automatically	to	mode	1,	instead	of	
the	default	mode	2,	until	a	reply	is	received.	Mode	1	messages	can	safely	be	received	out	of	
sequence,	and	in	this	case	the	ephemeral	public	key	that	is	stored	last	(presumably	from	the	last	
message	received)	is	the	one	involved	in	the	reply;	the	other	correspondent	will	be	able	to	
decrypt	this	reply	if	the	last	message	he/she	sent	was	also	the	last	received.	Resetting	the	
conversation	is	always	a	last	resort.	

OTR	involves	a	complex	system	for	mutual	authentication	and	deniability.	Signatures	are	used	
for	the	initial	exchanges,	and	there	is	a	special	set	of	steps	for	revealing	ephemeral	
authenticating	data	after	the	conversation	is	over,	so	that	anyone	can	forge	an	authentication	at	
that	point.	PassLok	takes	a	simpler	approach	without	signatures,	MACs,	or	special	authenticating	
keys	involved	at	any	point.	Correspondents	initiating	a	PassLok	conversation	in	Read-once	or	
Read-once	mode	authenticate	each	other	as	their	permanent	private	keys	are	involved	in	the	
initial	exchanges.	Once	a	conversation	is	in	course,	authentication	is	assumed	in	PassLok,	since	
only	those	able	to	retrieve	the	next	public	key,	which	comes	in	encrypted,	will	be	able	to	
continue	the	conversation.	OTR,	on	the	other	hand,	sees	the	need	to	keep	authenticating	the	
correspondents	at	each	message	by	means	of	a	new	MAC	using	a	hash	of	the	current	shared	key	
as	MAC	key	(the	first	message	is	authenticated	by	means	of	signatures	based	on	the	permanent	
private	keys,	so	neither	is	it	deniable	nor	does	it	possess	forward	secrecy).	It	is	likely	possible	to	
communicate	with	several	recipients	at	once	while	doing	this,	but	there	is	no	doubt	that	it	is	
going	to	be	more	complex	than	the	way	PassLok	does	it.	

The	Signal	protocol,	which	is	used	by	WhatsApp	and	other	messaging	apps,	started	out	as	a	
variation	on	OTR,	but	in	its	most	recent	versions	has	evolved	a	“double-ratchet”	method	to	keep	
the	conversation	in	sync.	In	essence,	a	new	ephemeral	private	key	is	generated	every	time	a	
message	is	received	from	a	certain	sender	(the	old	one	is	overwritten	immediately),	and	the	
shared	secret	is	not	used	directly	for	encryption,	but	rather	as	the	starting	point	of	a	“ratchet”	
(actually,	a	series	of	successive	hashes,	to	be	used	as	message	keys)	for	messages	sent	or	
received	until	the	next	ephemeral	public	key	is	received.	Every	message	key	within	a	ratchet	has	
a	consecutive	serial	number,	which	is	transmitted	in	clear	along	with	the	message,	and	every	
message	key	is	stored	until	a	new	ratchet	is	generated.	This	allows	each	message	to	use	a	
different	symmetric	key,	even	if	several	are	encrypted	by	the	same	sender	in	quick	succession.	
Since	the	shared	secret	can	be	generated	on	both	ends,	all	the	keys	in	the	ratchet	can	be	
produced	on	both	ends	so	long	as	its	number	is	known,	and	all	messages	can	be	decrypted	even	
if	they	arrive	out	of	order.	

Signal	uses	this	trick,	which	has	been	considered	secure	enough	by	the	experts	that	have	
analyzed	it,	so	no	message	is	lost,	but	it	does	entail	the	local	storage	of	additional	secrets,	which	
cannot	be	erased	until	the	corresponding	messages	have	been	decrypted	on	the	other	end.	This	
creates	a	liability	in	the	event	of	one	of	the	correspondents’	machines	being	compromised.	Local	
storage	is	presumed	encrypted,	but	it	would	be	better	if	secrets	were	not	stored	at	all.	PassLok	
does	re-use	the	message	key	until	a	reply	is	received	bringing	in	new	key	material,	but	
compromising	this	(ephemeral)	key	only	affects	the	messages	encrypted	with	it.	A	similar	
compromise	in	Signal	would	preserve	the	security	of	the	messages	on	the	same	ratchet	
encrypted	before	the	compromise,	but	those	following	it	would	be	compromised	as	well.	

The	differences	between	the	way	PassLok	on	one	hand,	and	OTR	and	Signal	on	the	other	hand,	
handle	forward	secrecy	can	be	attributed	to	the	latter	two	being	instant	messaging	apps	
whereas	PassLok	is	more	focused	on	asynchronous	conversations.	Losing	a	message,	or	being	
unable	to	decrypt	it,	which	amounts	to	the	same,	is	more	unpleasant	in	a	synchronous	

conversation	than	on	a	chain	of	emails,	for	instance,	and	so	OTR	and	Signal	go	to	extra	pains	to	
make	sure	that	no	message	is	lost,	incurring	the	liability	associated	with	storing	extra	secrets.	
But	in	asynchronous	communications	any	storage	is	liable	to	turn	into	permanent	storage,	so	
the	emphasis	rather	is	on	storing	as	little	as	possible	that	might	later	be	compromised,	even	if	
doing	so	might	cause	some	messages	to	be	lost.	In	that	event,	the	recipient	can	ask	for	the	lost	
information	to	be	re-sent	if	it	seems	necessary.

Key	Management	
	

One	of	the	hardest	problems	in	public	key	cryptography	is	how	to	generate,	distribute,	collect,	
access,	use,	and	verify	the	private	and	public	keys	that	are	at	the	base	of	the	whole	
cryptosystem,	especially	when	the	users	themselves	must	be	involved	in	the	process.	Most	
people	do	not	have	a	clear	understanding	of	the	most	basic	notions,	such	as	using	the	recipient’s	
public	key	to	encrypt	rather	than	one’s	own.	Confusion	prevails,	mistakes	abound,	and	
frustration	sets	in	after	a	short	time.	

While	many	cryptosystems	currently	in	use	or	under	development	try	to	solve	this	problem	by	
setting	up	servers	that	collect,	store,	and	distribute	such	keys,	PassLok	takes	a	very	different	
approach	and	does	away	with	special	servers	altogether.	This	is	based	on	our	experience	with	
PassLok	Privacy’s	own	key	server,	named	“PassLok	General	Directory”.	This	directory,	which	can	
still	be	accessed	at	https://passlok.com/lockdir,	is	a	separate	web	page	loaded	as	an	iframe	
within	PassLok	Privacy.	Users	voluntarily	post	their	“Locks”	(public	keys),	as	generated	by	
PassLok,	so	they	are	stored	and	classified	under	their	email	addresses	and	so	other	users	can	
retrieve	them.	The	General	Directory	requires	email	confirmation	to	post,	modify,	or	remove	a	
Lock,	and	to	keep	it	listed	after	six	months	have	elapsed.	It	has	a	simple	but	comprehensive	help	
system	and	has	worked	without	a	hitch	for	two	years	so	far	(April	2016).	

But	it	still	has	very	few	Locks	listed.	Many	fewer	than	active	PassLok	users,	if	we	count	the	
statistics	provided	by	all	the	sources	of	PassLok	Privacy.	This	is	possibly	because	users	send	their	
Locks	directly	to	their	friends,	or	attach	them	to	their	email	signatures,	or	simply	because	they	
have	no	interest	in	communicating	securely	with	people	with	whom	they	have	no	previous	
contact.	

Therefore,	PassLok	for	Email	is	designed	so	its	public	keys	(identical	to	PassLok	Privacy’s	Locks,	
for	compatibility)	are	distributed	at	the	same	time	as	the	messages	are	distributed,	which	is	
most	easily	achieved	by	simply	attaching	them	to	the	messages	themselves.	Thus,	the	sender’s	
Lock,	consisting	of	50	base36	characters	(digits	and	small	case	letters,	except	for	capital	“L”),	is	
prepended	to	every	encrypted	message.	PassLok	detaches	this	string	and	processes	it	before	the	
actual	decryption	takes	place,	this	way:	

1. The	Lock	(public	key)	is	converted	to	base64.	
2. The	sender’s	email	address	is	looked	up	in	the	local	directory	(this	was	described	earlier	

in	the	document).	
3. If	the	entry	exists,	retrieve	the	stored	Lock	(1st	item	in	an	array)	and	compare	it	with	the	

Lock	attached	to	the	message.	
4. If	the	two	Locks	match,	proceed	to	the	decryption	using	that	Lock.	If	they	don’t	or	the	

entry	does	not	exist,	display	a	dialog	alerting	the	user	of	this	fact	and	asking	for	

confirmation.	After	permission	is	granted,	proceed	with	decryption	using	the	Lock	
attached	to	the	message.	

5. In	the	second	case,	if	decryption	succeeds	store	the	new	Lock,	otherwise	keep	the	old	
one	or	leave	the	entry	empty.	

This	way,	users	acquire	other	users’	public	keys	(Locks)	and	keep	them	in	a	searchable	format	
with	hardly	any	involvement	on	their	part.	Locks	needed	for	encryption	are	obtained	
automatically	from	storage,	since	they	are	indexed	by	email	address.	In	order	to	maintain	
continuity	as	the	user	moves	to	other	computers,	the	directory	is	not	stored	locally	in	the	
Chrome	version,	but	rather	stored	in	“Chrome	sync”,	which	sends	them	to	Google	servers	so	the	
entire	database	can	be	retrieved	as	soon	as	the	user	loads	PassLok	under	his/her	Chrome	
account	on	another	machine.	Firefox	extensions	are	not	yet	compatible	with	Chrome	sync	or	
similar,	and	so	the	Firefox	version	of	PassLok	for	Email	stores	using	the	localStorage	variable	in	
HTML5	rather	than	in	synced	storage.	Locks	are	not	secret	by	nature,	and	so	they	are	stored	
unencrypted.	The	ephemeral	data	that	needs	to	be	stored	for	Read-once	mode	is	secret,	
however,	and	so	PassLok	encrypts	it	with	XSalsa20	before	storage,	using	the	user	Password	
stretched	by	WiseHash,	with	the	user	email	as	salt.	The	exact	nature	of	the	data	stored	for	a	
particular	recipient	is	explained	in	the	section	on	Read-once	mode	earlier	in	this	document,	and	
consists	of	the	recipient’s	email	address	plus	his/her	current	permanent	public	key	
(unencrypted),	ephemeral	private	key	and	ephemeral	public	key	(both	encrypted),	and	a	flag	
indicating	the	current	status	of	the	Read-once	exchange	(unencrypted).	This	compares	quite	
favorably	with	apps	based	on	protocols	such	as	OTR	or	Signal,	which	store	multiple	secret	keys.	

The	process	above	works	fine	if	one	is	always	replying	to	someone	else’s	prior	message,	since	in	
this	way	the	recipient’s	Lock	will	be	stored	before	the	reply	message	is	made.	If	one	is	initiating	
the	conversation,	however,	it	is	quite	possible	that	a	recipient’s	Lock	is	not	yet	known.	PassLok	
handles	this	situation	by	means	of	special	Invitation	messages.	This	way:	

1. If	the	Locks	pertaining	to	some	of	the	recipients	are	known	but	other	Locks	are	
unknown,	PassLok	encrypts	the	message	for	the	known	Locks	and,	rather	than	closing	
the	encrypt	window	right	after	encryption,	it	leaves	it	open	so	the	sender	can	see	a	
message	telling	him/her	which	recipients	won’t	be	able	to	decrypt	the	message.	Then	
he/she	can	close	that	window	and	remove	those	addresses	from	the	recipients’	list	
before	actually	sending	the	message.	

2. If	all	of	the	recipients’	Locks	are	unknown,	PassLok	hides	the	Encrypt	button	and	its	
options	and	instead	displays	an	Invite	button,	plus	a	special	message	telling	the	sender	
that	the	recipients	need	to	be	invited	and	that	the	invitation	message	won’t	be	secure.	
The	sender	must	click	the	Invite	button	twice	(another	message	warns	him/her	of	the	
lack	of	security),	and	then	PassLok	encrypts	the	message	written	in	the	box	with	the	
symmetric	XSalsa20	algorithm	only,	using	the	sender’s	own	Lock,	which	is	later	
prepended	to	the	encrypted	message,	as	encryption	key.	This	way	the	recipients	
retrieve	the	Lock	and	add	it	to	their	respective	directories	so	they	can	reply	to	the	
sender	with	a	normal	encrypted	message.	

Decrypting	an	invitation	message	(type	indicator	character	“g”	while	encoded,	plus	special	
headers)	triggers	the	display	of	additional	instructions,	which	are	added	to	the	decrypted	
message	and	tell	the	user,	who	presumably	is	new	to	PassLok,	how	to	reply	to	the	sender.	One	
may	ask,	however,	why	add	an	encrypted	message	at	all,	if	it	cannot	be	securely	encrypted	
against	eavesdroppers?	The	reason	is	this:	having	something	to	decrypt	as	part	of	an	invitation	
message	provides	a	further	enticement	for	the	recipient	of	the	invitation	to	actually	install	the	
Chrome	extension	and	go	back	to	the	invitation	email.	If	this	decrypts	successfully,	and	there	is	
no	reason	why	it	should	not	be	if	the	installation	has	completed	since	the	decryption	key	is	
attached	to	the	ciphertext,	the	user	is	rewarded,	which	further	entices	him/her	to	make	an	
encrypted	reply	and	thus	establish	full	communication	with	the	person	who	sent	the	invitation.	
In	this	way,	public	keys	have	been	exchanged,	stored,	and	made	available,	and	the	process	was	
completed	without	the	users	having	to	this	consciously.	In	their	minds,	they	were	just	replying	
to	an	invitation	someone	sent.	

PassLok	is	also	designed	to	make	it	very	easy	for	a	user	to	change	his/her	secret	Password.	The	
only	thing	that	is	needed	is	to	type	in	the	new	Password	when	the	Password	is	requested.	
PassLok	computes	the	new	public	key	and	begins	to	attach	it	to	new	encrypted	messages	right	
away.	If	a	Read-once	encryption	or	decryption	needs	to	retrieve	ephemeral	data	that	are	stored	
encrypted	under	the	old	Password,	the	program	prompts	the	user	for	the	previous	Password	but	
this	does	not	cause	it	to	replace	it	the	new	Password	that	was	entered	earlier.	The	same	thing	
happens	when	the	user	is	decrypting	a	message	that	was	encrypted	by	someone	else	using	the	
previous	public	key.	If	the	sender	is	the	one	who	has	changed	his/her	Password	(and	therefore	
the	public	key	attached	to	an	encrypted	message	has	changed),	PassLok	warns	the	recipient	and	
asks	for	confirmation	before	using	the	new	public	key,	which	only	replaces	the	old	one	in	
storage	if	decryption	is	successful.	

Authentication	of	public	keys	(“Locks”	in	PassLok	lingo)	is	easy	to	do	off-channel	without	resort	
to	signatures,	“web	of	trust”	or	suchlike.	PassLok	Locks	consist	of	50	case-insensitive	
alphanumeric	characters,	and	are	always	placed	at	the	start	of	any	invitation	or	encrypted	
message.	Users	only	need	to	dictate	the	beginning	of	a	message	they	encrypted	through	a	rich	
channel	such	as	audio	or	video,	and	let	natural	biometrics	do	the	authentication	for	those	
recipients	who	know	them	in	person.	Authentication	of	perfect	strangers	is	trickier,	but	can	also	
be	achieved	by	resorting	to	trusted	third	parties	(people,	not	computers)	who	know	both	
putative	correspondents	personally.

	 26	

Other	functions	
	

Decoy	mode	

Decoy	mode	supplements	the	regular	encryption	modes	by	encrypting	a	hidden	message,	which	is	then	
placed	as	the	“padding”	string	of	an	encrypted	item.		

The	purpose	of	Decoy	mode,	which	gives	it	its	name,	is	to	provide	a	hidden	channel	to	combat	the	
“rubberhose	attack.”	In	this	scenario,	the	recipient	of	an	encrypted	message	is	forced	to	disclose	his/her	
private	key	(possibly	by	repeated	application	of	a	rubber	hose	or	similar	instrument	to	a	part	of	his/her	
anatomy),	so	the	message	can	be	decrypted.	Decoy	mode	makes	it	possible	to	exchange	sensitive	
information	by	means	of	the	hidden	messages	while	the	main	encrypted	messages	are	“decoys”	
containing	harmless	information.	This	gives	the	recipient	“plausible	deniability.”	That	is,	he/she	can	
claim	that	there	is	no	additional	hidden	information	since	that	hidden	information,	even	if	present,	is	
undetectable.	In	the	absence	of	other	indications	to	the	contrary,	a	rational	enemy	would	conclude	that	
the	only	information	contained	in	the	encrypted	message	is	what	can	be	obtained	by	decrypting	it	in	the	
normal	way.	

Hidden	messages	are	limited	to	75	ASCII	characters	in	length,	so	that	a	complete	Lock	can	be	
transmitted	this	way.	The	plaintext	is	subjected	to	a	modified	encodeURI	operation	before	encryption,	
to	be	reversed	by	decodeURI	after	decryption.	PassLok	provides	feedback	to	the	user	as	the	hidden	
message	is	entered	so	its	length	does	not	exceed	the	limit.	Characters	beyond	the	limit	are	truncated	
and	the	user	is	warned	of	this	fact.	

Encryption	of	the	hidden	message	can	be	of	two	types:	symmetric	and	asymmetric.	PassLok	decides	
which	mode	to	use	from	the	length	of	the	special	key	supplied	along	with	the	message.	If	the	length	of	
its	base64	part	is	exactly	43	characters,	PassLok	interprets	it	as	a	public	key	and	uses	Anonymous	
encryption,	otherwise	it	uses	symmetric	encryption.	Symmetric	keys	are	stretched	after	strength	
analysis	exactly	like	other	symmetric	keys,	as	described	above,	and	then	used	to	do	the	encryption	of	
the	hidden	plaintext,	with	the	same	nonce	as	the	main	message.	When	using	a	public	key,	one’s	
permanent	private	key	is	used	to	make	an	encryption	key	for	the	hidden	message,	by	Diffie-Hellman	
combination	with	the	special	public	key.	

To	extract	the	hidden	message,	the	recipient	must	request	that	the	padding	included	with	the	main	
encrypted	message	be	subject	to	Decoy	decryption,	by	clicking	a	Decoy	button	on	the	decrypt	window.	
Since	the	encrypted	hidden	message	is	meant	to	be	indistinguishable	from	a	random	string,	the	
recipient	must	tell	PassLok	whether	the	special	key	supplied	is	a	symmetric	key	or	a	private	key,	which	is	
done	via	a	checkbox	on	the	screen	requesting	special	key	input	(default	is	symmetric	key).	If	symmetric,	
PassLok	simply	uses	it	with	nacl.secretbox.open	and	the	same	nonce	as	the	main	message	in	order	to	
decrypt	the	hidden	message.	If	private,	PassLok	combines	it	with	the	sender’s	public	key,	which	is	

	 27	

included	with	the	main	message.	The	resulting	shared	secret	is	then	used	with	nacl.secretbox.open	and	
the	same	parameters	as	for	a	symmetric	key.	

Decoy	decryption	fails	in	exactly	the	same	way	whether	the	special	key	supplied	is	incorrect	or	there	is	
no	hidden	message	to	begin	with.	Thus,	trial	decryption	cannot	be	used	to	detect	the	presence	of	a	
hidden	message.	

Real-time	chat	

PassLok	Privacy	started	supporting	real-time	chat	with	version	2.1.	Unlike	other	communication	
programs,	which	rely	on	servers	to	pass	the	data	between	the	participants,	PassLok	relies	on	direct	
connections	between	clients	via	the	webRTC	protocol,	which	is	based	on	TLS	at	its	core.	Since	TLS	and	
webRTC	are	fairly	complicated	protocols	that	have	been	extensively	tested	for	security,	we	will	just	
assume	that	the	connection	is	secure	once	it	is	established.	This	section,	therefore,	presents	the	method	
designed	to	establish	the	connection	from	PassLok.	

PassLok	is	used	to	generate	an	encrypted	“chat	invitation”	which,	when	decrypted,	provides	the	secret	
information	needed	to	connect	to	the	chat	session	by	webRTC.	This	information	consists	of	the	
following:	

1. Optional	message:	43	characters	where	the	sender	can	write	the	time	for	the	chat	and	other	
short	information.	

2. Chat	type	identifier:	“A”	for	text	and	files,	“B”	for	text,	files,	and	audio,	“C”	for	text,	files,	audio,	
and	video.	

3. Chat	room	name:	randomly	generated	sequence	of	common	words	(taken	from	the	built-in	
blacklist),	with	common	substitutions.	The	idea	is	to	generate	a	name	what	would	not	reveal	its	
being	originated	by	PassLok.	This	string	is	padded	with	spaces	to	43	characters.	

4. Password:	43	base64	characters,	also	randomly	generated.	

The	set	is	concatenated	into	a	single	string	and	encrypted	with	the	currently	selected	encryption	
method.	The	sender	is	automatically	added	as	a	recipient,	so	he/she	can	decrypt	the	invitation	like	the	
other	recipients.	At	the	end,	special	tags	are	added	to	the	encrypted	item	so	the	recipients	can	
recognize	it	as	a	chat	invitation.	

When	the	item	is	decrypted,	PassLok	recognizes	it	by	length	(130	plaintext	characters),	triggering	a	
special	set	of	steps:	

1. If	there	is	a	message,	display	it	in	a	prompt	and	request	confirmation	to	continue	(it	may	be	
that	the	time	set	for	the	chat	has	not	yet	arrived).	

2. Then	load	a	special	chat	page	in	a	new	tab,	and	pass	the	rest	of	the	decrypted	material	as	a	
hash	value	(on	the	URL	itself,	following	a	“#”	character).		

3. PassLok	rests	at	this	point.	Meanwhile	the	chat	page	contacts	Firebase.io	in	order	to	obtain	its	
external	IP	address,	which	is	necessary	to	establish	webRTC	connections.	It	also	checks	whether	
a	chat	session	with	the	given	name	(obtained	through	the	URL	hash)	has	already	started.	If	it	

	 28	

has,	a	“Join”	button	is	displayed,	otherwise	it	is	a	“Start”	button,	and	additional	instructions	are	
shown	to	the	user.	

4. Participants	are	expected	to	supply	a	name	to	be	identified	during	the	chat	session,	and	then	
click	the	button.	The	first	participant	gets	a	“waiting	for	other	to	join”	message,	while	
Firebase.io	holds	the	IP	address	so	it	can	give	it	to	other	participants	joining	that	particular	chat.	

5. As	more	participants	join,	Firebase.io	give	them	the	IP	numbers	of	the	current	participants,	so	
they	can	connect	directly	via	webRTC.	Then	webRTC	negotiates	participant-to-participant	
connections	from	each	machine.	The	one	starting	the	chat	has	control	over	who	is	allowed	to	
join.	

6. Before	each	new	participant	can	actually	connect	to	each	of	the	others,	the	starting	
participant’s	machine	must	allow	him/her.	This	will	only	happen	if	the	correct	password	is	sent	
during	the	negotiation	stage.	Notice	that	the	password	was	never	sent	to	Firebase.io,	but	rather	
remained	secret	with	each	of	the	participants.	

Steps	2	and	following	can	be	repeated	by	simply	reloading	the	chat	tab,	in	case	the	webRTC	connections	
to	one	of	several	participants	fail.	Testing	has	shown	that	Firefox	(as	of	v.35)	provides	the	most	reliable	
connection,	while	Chrome	and	Opera	have	problems	connecting	all	of	several	participants	to	one	
another.	

Text	Steganography	

Steganography	is	the	art	of	hiding,	rather	than	encrypting,	private	information.	The	difference	with	
cryptography	is	that	the	information	is	undetectable	rather	than	unreadable.	Steganography	is	desirable	
for	certain	scenarios.	For	instance,	people	wish	to	correspond	in	a	country	where	cryptography	is	illegal.	
If	cryptography	alone	is	used,	its	random-looking	output	alerts	the	authorities	of	the	fact,	with	possibly	
bad	consequences.	

Much	of	today’s	surveillance	is	being	done	by	automated	scanning	programs	or	“bots.”	They	are	very	
fast	and	never	tire,	but	since	they	are	not	human	it	is	hard	for	them	to	catch	whether	what	people	are	
saying	to	each	other	actually	makes	sense.	This	is	the	basis	of	text	steganography,	where	random-
looking	strings	can	be	converted	into	apparently	normal	text	(at	least,	as	far	as	a	bot	can	tell),	and	back	
on	the	other	end.	PassLok	implements	five	kinds	of	text	steganography.	In	addition,	PassLok	implements	
one	kind	of	image	steganography,	where	the	secret	text	is	hidden	in	the	least-significant	values	of	pixel	
data	in	a	cover	image,	resulting	in	an	image	that	human	eyes	cannot	distinguish	from	the	original.	

These	are	the	five	kinds	of	text	steganography	implemented	in	PassLok	Privacy,	none	of	which	requires	
the	recipient	to	possess	the	cover	text	that	the	sender	used	for	encoding.	PassLok	for	Email	uses	the	
Letters	and	Invisible	methods:	

• Words:	Characters	are	encoded	as	words	taken	from	the	cover	text,	two	for	each	character.	

• Spaces:	Characters	are	encoded	as	spaces	between	words	of	the	cover	text,	and	other	than	this	
the	cover	text	looks	the	same.	

	 29	

• Letters	(default):	Some	characters	in	the	cover	text	are	switched	between	their	normal	“Latin”	
forms,	and	other	forms	(Greek,	Cyrillic)	resulting	in	text	that	looks	identical	but	is	able	to	encode	
a	text.	

• Sentences:	Each	character	of	the	original	is	replaced	by	a	sentence	from	the	cover	text.	The	
sentences	are	for	11	different	lengths	and	end	with	one	of	six	different	punctuation	characters.	

• Invisible:	The	entire	string	is	encoded	as	characters	that	won’t	take	any	space	on	the	page.	The	
invisible	string	result	is	bracketed	by	two	dummy	strings	that	can	be	modified	at	will.	

As	a	table:	

Method	 Spaces	 Punctuation	 Grammar	

Words	 constant	 random	 random	

Spaces	 variable	 original	 original	

Letters	 variable	 original	 original	

Sentences	 constant	 encoded	 correct	

Invisible	 variable	 none	 none	

	

None	of	these	methods	is	perfect,	since	the	Words	and	Sentences	methods	produce	output	that,	even	if	
grammatically	correct,	does	not	really	make	sense,	and	the	spaces	in	Letters	and	Spaces	output	are	
irregular	so	that	a	keen	eye	can	detect	there	is	encoding.	But	it	is	likely	that	one	of	them	might	be	able	
to	defeat	a	particular	scanning	bot	that	is	not	looking	specifically	for	text	encoded	by	each	method.	To	a	
human	observer	that	is	not	paying	much	attention	to	what	the	text	says,	the	last	three	appear	quite	
acceptable	since	the	sentences	are	grammatically	correct.	

As	mentioned	earlier,	PassLok	for	Email	implements	the	Letters	or	Invisible	encoding	methods	right	after	
encryption,	if	so	set	via	a	radio	button	in	the	encrypt	dialog.	Decoding	is	automatic	as	soon	as	the	
presence	of	encoding	is	detected,	and	performed	prior	to	decryption.	

The	Letters	method	is	adapted	from	the	Advanced	Unicode	Stego	by	Adrian	Crenshaw,	2013,	which	can	
be	found	at	http://www.irongeek.com/i.php?page=security/unicode-steganography-homoglyph-
encode.	This	form	of	encoding	begins	the	same	way	as	Spaces	encoding:	the	item	to	be	encoded	is	first	
converted	into	a	binary	string,	at	7	bits	per	character,	based	on	each	character’s	ASCII	value.	But	instead	
of	encoding	this	string	as	single	or	double	spaces,	it	replaces	the	regular	spaces	with	alternative	Unicode	
encodings	for	a	space.	It	uses	codes	2004-2009	plus	202f	and	205f,	in	addition	to	the	standard	0020	
code.	Thus	every	space	can	encode	three	bits	of	the	binary	string.	

	 30	

In	addition	to	spaces,	alternative	encodings	are	used	for	a	number	of	letters	that	look	the	same	
(homoglyphs)	in	the	Latin	and	Cyrillic	or	Greek	sections	of	the	Unicode	chart.	Thus,	the	original	capital	
“A”	(Unicode	0041),	can	be	replaced	by	the	Greek	“A”	(Unicode	0391).	When	the	Latin	“A”	is	used,	a	“0”	
is	encoded,	and	when	the	Greek	“A”	is	used,	this	means	a	“1”.	Not	all	Latin	letters	have	non-Latin	
homoglyphs,	but	many	of	them	do:	a,	A,	B,	c,	C,	e,	E,	g,	H,	i,	I,	j,	J,	K,	M,	N,	o,	O,	p,	P,	s,	S,	T,	x,	X,	y,	Y,	Z.	
The	result	is	a	text	that	looks	identical	to	the	cover,	but	encodes	another	text	in	a	fairly	compact	fashion.	

The	cover	text	is	repeated	if	more	space	is	needed,	and	it	is	truncated	when	the	complete	binary	string	
has	been	encoded.	Since	the	output	may	be	in	the	middle	of	a	sentence,	a	warning	tells	the	user	that	the	
text	should	be	completed.	Completing	with	Latin	characters	and	regular	spaces	does	not	alter	the	
material	encoded.	

To	decode,	the	program	finds	the	non-Latin	characters	and	non-standard	spaces	and	records	a	1	(a	
three-bit	code,	for	spaces),	or	a	0	if	the	corresponding	Latin	character	was	used.	Then	the	binary	string	is	
converted	back	to	the	original	characters.	

Letters	encoding	produces	a	short,	hard	to	detect	encoding	(and	this	is	why	it	is	the	default	method	in	
PassLok	Privacy,	and	the	one	used	in	PassLok	for	Email),	but	has	the	disadvantage	that	online	services	
may	change	the	non-Latin	characters	and	nonstandard	spaces	into	their	standard	Latin	forms	as	soon	as	
the	text	is	pasted	on,	thus	destroying	the	encoded	information.	The	user	is	warned	to	make	a	test	with	
each	particular	service	before	using	this	encoding	method.	

Invisible	

Since	all	characters	in	an	output	string	are	base64,	they	can	be	represented	by	6-bit	binary	numbers.	
These	numbers,	in	turn,	are	encoded	as	two	kinds	of	non-printing	Unicode	characters	beteeen	two	
dummy	pieces	of	text.	Here	is	the	encoding	process:	

1. For	each	character	in	the	original	string,	represent	the	base64	character	as	binary,	and	then	
write	Unicode	character	00ad	for	a	0,	or	a	character	200c	for	a	1	

2. Place	the	result	between	two	lines	of	dummy	text.	The	best	location	is	at	the	end	of	the	first	line	
so	it’s	hard	to	select	by	selection.	

To	decode,	find	those	special	characters	and	convert	them	back	to	1s	and	0s,	then	encode	the	result	
back	to	base64.	Of	course,	the	Unicode	characters	that	make	up	the	“invisible”	text	are	not	invisible	at	
all	to	a	program	that	might	be	trying	to	detect	them,	but	it	may	fool	a	human	inspector	lacking	the	
appropriate	scanning	tool.	

Image	Steganography	

PassLok	includes	another	way	to	conceal	its	items,	and	this	is	within	images.	The	algorithm	used	is	an	
enhancement	of	the	F5	algorithm,	by	Andreas	Westfeld,	devised	to	make	sure	that	the	histogram	of	
coefficients	of	the	original	jpeg	cover	image	is	hardly	changed	at	all	by	the	encoding	process.	

	 31	

In	order	to	provide	non-detectability,	the	algorithm	involves	a	password,	which	is	used	to	seed	a	PRNG	
(the	current	JavaScript	implementation	uses	Isaac,	derived	from	RC4).	The	PRNG	then	produces	a	
random	permutation	of	the	image	data	to	be	used,	which	can	later	be	reversed.	The	data	is	different	for	
png	and	jpeg	encoding.	When	encoding	into	a	png	image,	the	data	is	the	pixel	values	for	the	red,	green,	
and	blue	channels,	excluding	the	alpha	channel	because	typically	this	channel	does	not	contain	any	
information	(100%	opacity	for	all	pixels),	and	so	anything	encoded	into	it	would	be	easily	detected.	Pixel	
data	from	areas	not	having	full	opacity	are	also	ignored	since	these	areas	tend	to	have	full	black	or	full	
white	pixel	values	and	encoding	there	would	be	detected.	When	the	output	is	a	jpeg	image,	the	data	to	
be	modified	is	the	non-zero	coefficient	values	for	all	the	blocks	that	the	jpeg	image	is	divided	into	(zero	
coefficients	are	not	included	because	then	the	image	would	fail	to	compress	adequately,	plus	visual	
artifacts	would	appear	in	areas	of	solid	color).	

The	first	step,	therefore,	is	to	extract	the	data	image	to	be	modified	by	the	encoding	and	put	it	all	into	a	
linear	array.	Then	the	PRNG	generates	a	permutation	of	that	array,	based	on	the	given	password,	thus	
scrambling	the	data	to	pseudo-random	locations.	The	WiseHash	key-stretching	algorithm	is	used	so	that	
low-entropy	passwords	are	stretched	more	than	high-entropy	ones.	If	no	password	is	given,	the	PRNG	is	
seeded	with	a	string	based	on	the	image	pixel	dimensions	and	type.	Since	the	password	must	be	known	
both	by	the	sender	and	the	receiver,	PassLok	proposes	a	default	value	based	on	the	sender’s	private	key	
and	the	(single)	recipient’s	public	key	(or	shared	key,	if	that	is	what	is	currently	selected),	which	users	
can	edit	before	the	encoding	takes	place.	

After	scrambling	the	image	data,	encoding	of	the	data	to	be	hidden	takes	place.	PassLok	assumes	that	
the	data	to	be	encoded,	which	is	the	output	of	a	cryptographic	algorithm	is	already	statistically	random,	
so	the	PRNG	is	not	invoked	again	at	this	point,	as	it	is	in	F5.	To	this	it	appends	an	end-of-data	code	
consisting	of	24	zeroes	followed	by	24	ones.	Matrix	encoding	is	used,	so	that	first	the	program	
determines	the	largest	k	factor	that	will	allow	all	the	message	data	to	be	encoded	within	the	available	
space	(leaving	some	space	for	a	hidden	message,	more	on	this	later).	The	value	of	k	is	encoded	first	of	
all,	using	the	fist	four	bits	available	in	the	image	data.	Then	the	image	data	is	split	into	blocks	of	size	2^k	
–	1,	and	a	single	change	made	within	each	block	(its	location	within	the	block	is	what	makes	the	
difference),	depending	on	whether	the	output	is	png	or	jpeg:	

• For	png	output,	the	image	data	(pixel	color	value)	is	raised	by	one	if	originally	even,	or	lowered	
by	one	if	originally	odd,	thus	changing	its	parity.	

• For	jpeg	output,	the	image	data	(DFT	coefficient	values)	is	decreased	in	absolute	value	by	one	
(decreased	if	positive,	increased	if	negative),	with	some	exceptions.	If	the	original	value	is	one,	it	
changes	to	minus	one,	if	originally	minus	one,	it	changes	to	one	(parity	is	re-defined	in	jpeg	
encoding	so	it	is	reversed	from	the	normal	sense	for	negative	values),	in	most	situations,	but	
sometimes	a	one	will	change	to	a	two,	and	a	minus	one	to	a	minus	two.	Likewise,	a	two	will	
sometimes	change	to	a	three	instead	of	a	one,	and	a	minus	two	into	a	minus	three	rather	than	a	
minus	one.	This	special	choice	is	triggered	whenever	the	number	of	ones	or	minus	ones	falls	or	
exceeds	the	original	value.	In	order	to	prevent	the	coefficient	histogram	as	a	whole	to	slide	to	
lower	values,	an	increment	in	absolute	value	takes	place	at	random,	rather	than	the	usual	
decrement.	The	probability	for	this	to	happen	is	determined	before	the	encoding	begins,	based	

	 32	

on	the	original	histogram	of	coefficients.	This	strategy	avoids	creating	any	additional	zeroes	(as	
F5	does)	and	maintains	the	histogram	of	the	DFT	coefficients	very	close	to	the	original,	making	it	
very	hard	to	detect	the	presence	of	the	encoding.	

After	the	encoding	has	taken	place,	the	modified	image	data	is	returned	to	its	original	order	by	reversing	
the	permutation	and	then	it	is	injected	back	into	the	image.	The	user	is	then	instructed	to	right-click	on	
the	image	to	save	it	to	the	clipboard	or	a	local	file.	

Decoding	begins	the	same	as	encoding,	and	requires	the	same	password	in	order	to	scramble	the	image	
data	in	the	same	way,	or	otherwise	the	process	will	fail.	The	value	of	k	is	encoded	in	the	first	four	bits,	
and	then	the	rest	of	the	image	data	is	split	into	blocks	of	2^k-1	bits.	Then	the	matrix	decoding	algorithm	
is	invoked	on	every	block	of	image	data,	essentially	involving	a	short	hash	of	each	block,	whose	value	is	
the	embedded	message	data.	Rather	than	check	for	the	end-of-data	code	after	each	block	is	processed,	
the	entire	image	data	is	processed	first	and	then	we	look	for	the	end-of-data	code.	The	latter	option	is	
considerably	faster	when	coded	in	JavaScript.	If	the	end-of-data	code	is	found,	the	values	preceding	it	
are	outputted	as	recovered	message,	otherwise	an	error	is	triggered.	

We	mentioned	earlier	that	some	space	is	reserved	for	a	second	message.	If	the	user	selects	to	have	a	
second	message	(by	having	a	three-part	password,	formatted	as	first	password,	vertical	bar	‘|’,	second	
password,	vertical	bar,	second	message),	then	the	process	repeats	using	the	unused	image	data,	which	
is	scrambled	again	with	a	new	permutation	based	on	the	second	password,	and	embedding	the	second	
message,	before	the	first	scrambling	is	reversed.	When	decoding,	the	user	tells	PassLok	that	a	second	
message	may	be	present	by	formatting	the	password	field	this	way:	first	password,	vertical	bar,	second	
password.	PassLok	will	then	attempt	to	extract	the	second	message	(which	also	ends	with	the	end-of-
data	code)	after	extracting	the	first,	using	the	second	password	to	scramble	the	image	data	after	the	
point	where	the	first	end-of-data	code	is	found.	The	process	will	fail	if	either	the	first	or	the	second	
password	is	incorrect.	

It	is	worth	mentioning	that	the	process	fails	in	exactly	the	same	way	whether	the	password	entered	is	
incorrect	(or	one	of	them,	if	there	are	two),	or	there	is	no	data	embedded	in	the	image.	In	both	cases,	
the	end-of-data	code	is	not	found,	and	the	same	message	is	triggered.	This	means	that	an	enemy	cannot	
even	detect	whether	anything	is	encoded	into	the	image,	unless	he/she/it	has	the	correct	password(s).		

	 33	

Threat	analysis	
	

The	scenario	presented	earlier	is	just	one	of	the	ways	in	which	a	third	party	could	try	to	subvert	the	
security	provided	by	PassLok.	Here	are	a	few	more	attacks,	presented	here	as	a	simple	eavesdropper	
(Eve)	or	powerful	enemy	(Mallory)	trying	to	mess	with	communications	between	Alice	and	Bob:	

1. Man-in-the-middle:	Mallory	intercepts	all	communications	between	Alice	and	Bob,	and	poses	as	
the	rightful	sender	or	recipient	in	each	message.	Thus	Alice	encrypts	information	with	“Bob’s”	
public	key	(actually	Mallory’s),	which	Mallory	intercepts,	decrypts,	re-encrypts	with	the	
authentic	public	key	for	Bob,	and	sends	to	Bob.	He	can	do	the	same	thing	for	information	
traveling	from	Bob	to	Alice.	

2. Rubberhose:	Mallory	kidnaps	Alice	and	forces	her	to	reveal	her	private	key	without	Bob	knowing	
anything.	Then	he	can	read	their	correspondence	and	implicate	both	Alice	and	Bob.	

3. Dictionary:	Eve	grabs	Alice’s	public	key	and	runs	complete	dictionaries	of	trial	private	keys	
through	an	optimized	program	(possibly	with	optimized	hardware	as	well)	that	generates	public	
keys	for	each	trial	key	until	a	match	is	found.	Then	she	knows	Alice’s	private	key	and	can	
impersonate	her	any	time.	

4. Rainbow	table:	As	above,	but	Eve	performs	the	calculations	ahead	of	time	and	stores	the	public	
keys	matching	every	private	key	tried.	Then	she	only	needs	to	look	up	any	public	keys	she	wants	
to	crack	and	find	the	private	key	from	which	it	proceeds.	

5. 	Cross-scripting:	Mallory	directs	Bob’s	browser	to	fake	servers,	which	he	controls.	The	servers	
send	modified	web	pages	containing	code	snippets	that	change	the	PassLok	code,	so	its	security	
is	undermined,	or	steal	sensitive	data	such	as	Bob’s	private	key.	

6. Tracking:	Mallory	monitors	external	Internet	resources	so	that,	as	soon	as	one	of	them	is	
accessed,	he	is	able	to	recognize	the	request	as	coming	from	a	PassLok	user.	He	then	grabs	the	
IP	number,	which	gives	away	the	user’s	location.		

7. Timing/side	channel:	Eve	is	subjecting	the	correspondents’	computers	to	indirect	surveillance	by	
recording	the	time	it	takes	for	messages	to	travel	between	them,	or	by	recording	sounds,	lights,	
heat,	electrical	impulses	other	than	those	encoding	the	messages,	which	give	away	information	
about	the	processing.	

8. FISA	court	order/server	hacking:	Mallory	presents	a	court	order	to	the	web	host	of	the	PassLok	
code	(Google	or	Mozilla,	in	the	case	of	PassLok	for	Email),	asking	access,	plus	a	gag	order	against	
revealing	anything,	or	simply	obtains	unauthorized	access	to	the	web	server	by	hacking	into	it.	
Then	he	changes	the	code	in	subtle	ways	to	undermine	its	security	and	waits	for	Alice	and	Bob	
to	download	it	and	use	it.	From	then	on,	he	can	decrypt	all	their	PassLok-encrypted	
communications.	

9. Zero-day:	similar	to	the	attack	above,	except	that	the	weakness	is	in	the	browser,	the	operating	
system,	or	the	hardware,	planted	beforehand	so	it	can	be	used	when	needed.	

10. Hardware	theft:	Mallory	steals	Alice’s	computer,	which	contains	all	her	PassLok	data,	hoping	to	
impersonate	her	and	communicate	with	Bob.	

	 34	

11. Data	theft:	Bob	has	been	using	a	computer	to	which	Eve	also	has	access.	When	Bob	steps	out	of	
his	cubicle	to	get	a	cup	of	coffee,	Eve	quickly	steps	in	and	copies	all	PassLok	data	stored	in	Bob’s	
machine.	

Surely	there	are	many	more	attacks,	but	these	are	the	most	common,	and	the	ones	to	which	PassLok	is	
most	vulnerable.	Let’s	see	how	PassLok	tries	to	foil	them.	

Man-in-the-middle	

The	issue	here	is	user	authentication.	Alice	cannot	tell	that	Bob’s	public	key	is	actually	his	just	because	it	
purportedly	came	from	his	email	address	(which	is	what	most	“secure	encryption”	products	in	today’s	
market	rely	on),	because	an	adversary	could	easily	intercept	the	emails	and	change	them	en	route.	
Neither	can	she	tell	that	Bob’s	public	key	is	authentic	just	by	looking	at	it.	This	problem	is	shared	by	all	
public	key	cryptosystems,	and	dealt	with	in	various	ways.	A	popular	one	is	to	have	a	third	party	sign	the	
public	key	with	his/her/its	private	key,	which	would	be	proof	that	this	third	party	believes	the	public	key	
is	authentic.	This	third	party	can	be	a	person	that	both	Alice	and	Bob	know	and	trust,	or	a	stranger	that	
is	trusted	implicitly	because	of	its	title	or	position.	If	a	known	person,	we	are	talking	about	a	“web	of	
trust,”	if	a	stranger,	we	have	a	“certificate.”	Webs	of	trust	have	not	progressed	much	since	they	were	
proposed	more	than	twenty	years	ago	in	order	to	provide	some	authentication	to	PGP	public	keys.	The	
natural	offshoot	of	this	is	Certification	Authorities	(CA),	which	are	known	to	the	browsers	from	factory	
and	trusted	implicitly.	CAs	are	at	the	core	today’s	security	protocols	like	SSL/TLS.	Unfortunately,	there	
have	been	reports	of	CAs	not	following	due	diligence	before	issuing	certificates	or	just	plainly	lying	(a	
number	of	CAs	are	government-operated).	If	this	is	an	indication	of	the	current	state	of	affairs,	a	recent	
NSA	report	does	not	list	SSL/TLS	as	a	major	obstacle	to	its	information-gathering	efforts,	while	PGP	and	
some	protocols	proper	to	Apple	systems	are	listed.	

PassLok	does	not	even	attempt	to	create	a	web	of	trust	or	sign	certificates.	Instead,	it	relies	on	rich	
media	for	user	authentication.	PassLok	Locks	(public	keys)	are	short	enough	that	users	can	actually	
dictate	them	over	the	phone	or	in	a	short	video	so	that	those	viewing	the	media	can	associate	the	Lock	
being	read	with	the	voice	and	the	face	of	a	person	they	recognize,	and	be	sure	of	the	Lock’s	authenticity	
without	a	need	for	witnesses.	Locks	are	very	easy	to	read	without	ambiguity	because	they	are	expressed	
in	base36,	which	does	not	distinguish	between	lowercase	and	capital	letters.	

In	addition	to	this,	the	help	system	also	contains	instructions	for	using	the	well-known	interlock	
protocol,	which	basically	involves	splitting	a	special	encrypted	message	into	two	parts	that	are	sent	at	
different	times.	If	the	protocol	is	followed	correctly,	a	man-in-the-middle	would	be	forced	to	act	on	the	
contents	of	the	split	message	before	the	two	halves	are	available,	which	is	unlikely	to	not	be	discovered.	

Rubberhose	

This	has	already	been	discussed	when	Decoy	mode	was	presented.	The	concept	here	is	“plausible	
deniability.”	One	way	to	achieve	this	is	to	encrypt	two	different	messages,	the	real	one	and	a	dummy,	
innocuous	one,	encrypted	under	different	keys.	If	a	powerful	adversary	demands	the	decryption	key,	the	
victim	can	give	him/her/it	the	key	that	decrypts	the	dummy	message	while	keeping	secret	the	key	that	

	 35	

decrypts	the	hidden	message.	This	is	likely	to	succeed	if	the	presence	of	the	hidden	message	cannot	be	
detected.	PassLok	implements	a	form	of	this	in	which	one	message	can	be	detected	and	the	other	
cannot,	by	encrypting	the	hidden	message	into	a	“padding”	string	that	would	otherwise	be	completely	
random	(or	rather,	pseudorandom).	This	process	is	optional,	selected	by	a	checkbox	on	the	interface.	
Most	likely,	the	padding	string	is	the	result	of	encrypting	a	random	string	with	a	random	key.	

This	is	actually	better	than	always	containing	two	messages.	If	this	were	the	situation,	the	attacker	
would	know	that	the	victim	must	be	forced	to	produce	two	keys	rather	than	one.	But	by	making	the	
feature	optional	the	attacker	can	never	be	sure	that	there	is	a	second	message	encrypted	under	a	
different	key,	and	the	victim	could	plausibly	deny	its	existence.	

Another	feature	that	is	related	to	this	attack	is	deniability,	defined	as	the	impossibility	to	link	an	
encrypted	message	to	a	particular	person,	whether	as	sender	or	as	receiver.	In	some	circumstances,	just	
the	fact	that	an	encrypted	message	has	been	exchanged	between	two	people	can	be	considered	
incriminating,	regardless	of	its	content.	The	problem	may	surface	as	soon	as	the	message	is	sent	
(external	deniability)	or,	in	some	cases,	after	one	of	the	parties	has	been	forced	to	relinquish	his/her	
private	key	(internal	deniability).	

All	the	encryption	modes	in	PassLok	Privacy	(the	standalone	app)	possess	external	deniability,	as	care	
has	been	taken	to	ensure	that	no	part	of	them	leaks	the	correspondents’	identity	to	those	not	
possessing	the	necessary	keys.	Unfortunately,	the	key	exchange	method	used	in	PassLok	for	Email	
involves	adding	the	sender’s	public	key	to	every	encrypted	message.	Since	the	public	key	is	usually	
known	to	belong	to	a	particular	person,	the	sender	does	not	get	external	deniability.	The	recipients,	
however,	do	get	this	feature	at	least	as	far	as	the	encrypted	message	itself.	On	the	other	hand,	getting	
an	encrypted	message	by	email	is	incriminating	enough	even	if	the	message	itself	cannot	be	tracked	to	
each	individual	recipient.	The	feature	is	retained	for	compatibility	with	PassLok	Privacy.	

Dictionary	

This	also	has	been	discussed	already,	when	describing	how	public	keys	are	derived	from	private	keys.	
One	common	way	to	crack	a	key,	starting	from	a	known	public	key,	is	by	trying	likely	choices	obtained	by	
combining	words	in	special	“hacking”	dictionaries,	until	one	of	them	generates	the	public	key.	This	is	
much	faster	than	trying	every	possible	combination	of	valid	characters,	and	typically	succeeds	in	
cracking	90%	of	real	passwords	within	a	couple	minutes	of	computer	time,	if	only	a	one-way	hash	of	it	is	
known.	Public	keys	are	at	least	one	order	of	magnitude	slower	to	generate	than	hashes	and	the	specific	
speed	depends	on	the	type	of	public	key,	but	the	process	is	still	within	the	reach	of	even	amateur	
hackers.	

PassLok	combats	this	by	adding	extra	iterations	of	the	SCRYPT	key-derivation	function	for	lower	values	
of	key	entropy	in	order	to	multiply	the	time	required	to	run	through	the	worst	key	choices,	as	was	
discussed	earlier.	In	this	section,	we	describe	how	the	entropy	is	measured.	The	process	for	English	
language	keys	is	as	follows:	

1. Remove	all	spaces	from	the	string	being	evaluated.	

	 36	

2. Detect	the	types	of	characters	used,	and	add	the	total	number	of	possible	values	to	a	counter.	
For	instance,	if	numbers	are	present,	add	10	to	the	counter;	if	small	case	letters,	add	26;	if	
capitals,	add	another	26,	and	so	on.	The	result	will	be	called	Ncount.	

3. PassLok	includes	two	dictionaries:	one	contains	the	1,000	most	common	English	passwords,	the	
other	contains	the	10,000	most	common	English	words.	In	order	to	account	for	common	
substitutions	(“1”	instead	of	“i”,	“3”	instead	of	“e”,	and	so	on),	perform	those	substitutions	on	
the	string	(the	dictionaries	already	have	those	substitutions	made).	

4. Then	remove	every	substring	that	is	found	in	the	common	password	blacklist.	Those	will	get	no	
credit.	

5. Then	find	every	substring	that	is	found	in	the	regular	word	list.	Count	how	many	distinct	ones	
are	present,	Nwords,	and	remove	them	all	from	the	string.	What	remains	should	be	text	
containing	no	words	from	the	dictionaries.	

6. Now	remove	characters	that	are	repeated,	or	are	repeated	periodically.	This	can	be	done	in	
JavaScript	with	this	command:	string	=	string.replace(/(.+?)\1+/g,'$1')	

7. Finally,	count	the	number	of	characters	remaining,	N,	and	perform	this	calculation:	

entropy	=	(N*log(Ncount)	+	Nwords*log(wordlist.length	+	blacklist.length))/log(2)	

where	wordlist.length	and	blacklist.length	are	the	numbers	of	entries	in	the	common	word	and	
password	dictionaries,	respectively.	The	result	of	the	calculation	is	the	entropy	of	the	original	string,	
in	bits.	The	essence	of	the	calculation	is	to	find	the	fraction	of	the	total	spaces	of	words	and	single	
characters	that	are	used	in	the	given	string,	and	sum	the	entropies	due	to	each.	Blacklisted	words	
add	to	the	size	of	the	dictionary	but	give	no	entropy	credit.	

Users	get	to	see	what	the	result	of	choosing	a	Key	with	a	low	entropy	will	be	before	they	commit	to	it,	
because	PassLok	displays	the	time	necessary	for	processing	(mostly	SCRYPT	iterations)	if	that	Key	is	
chosen.	In	order	to	give	an	accurate	number,	PassLok	times	the	calculation	of	1024	iterations	of	SCRYPT	
with	a	dummy	key	and	a	dummy	salt,	for	the	usual	parameters,	done	10	times	over.	This	is	done	as	soon	
as	PassLok	loads	and	the	result,	which	will	vary	according	to	the	computational	power	of	each	particular	
device,	is	stored	as	a	global	variable.	Calculating	processing	time	for	a	given	Key	is	done	with	this	
formula:	time	in	seconds	=	storedTimingInMilliseconds/10240000*iterations*2,	since	key	derivation	is	
done	twice	for	a	given	user-supplied	Key:	once	for	the	key	that	decrypts	locally	stored	items,	and	once	
again	for	the	actual	private	key	

Rainbow	table	

A	hacker	with	access	to	large	computing	power	and	storage	might	pre-calculate	the	public	keys	resulting	
from	all	the	entries	of	a	hacking	dictionary	(and	its	common	variants)	as	user	Keys.	The	result,	called	a	
rainbow	table,	would	mean	that	cracking	a	Key	would	be	as	simple	as	looking	it	up	on	the	table,	to	see	if	

	 37	

its	published	Lock	is	there.	This	is	a	real	threat	for	public-key	systems	like	PassLok,	where	user-supplied	
private	keys	are	used	rather	than	pseudorandom	keys.	

To	combat	this,	PassLok	for	Email	salts	the	user-supplied	Password	with	the	user’s	current	email	
address,	as	reported	by	the	email	page.	Most	email	services	report	this	in	the	normal	
username@servername.something,	but	some	services,	such	as	outlook.com,	report	something	else	
instead	(the	user’s	complete	name	in	the	case	of	outlook.com).	It	really	doesn’t	matter	so	long	as	it	is	
distinctive	to	the	user.	This	string	is	used	as	salt	by	the	SCRYPT	key-derivation	function,	so	the	resulting	
key	depends	from	it.	Now,	it	is	highly	unlikely	that	those	making	a	rainbow	table	have	decided	to	add	
precisely	this	user’s	email	(or	whatever)	when	they	made	it,	for	in	this	case	the	table	would	only	be	able	
to	crack	Keys	belonging	to	this	person.	This	means	that	a	user’s	Key	will	only	be	found	in	a	pre-cracked	
rainbow	table	if	no	personalizing	salt	value	was	used.	

An	additional	effect	of	this	is	that	users	always	have	different	public	keys	for	different	email	accounts,	
even	if	the	Password	used	in	all	accounts	is	the	same.	This	helps	to	keep	the	data	separate.	

Cross-scripting	

Every	html	document	that	loads	data	produced	by	a	third	party	is	subject	to	cross-scripting	attack,	
where	the	data	loaded	contains	malicious	JavaScript	code	that	is	executed	automatically.	The	effect	can	
be	as	subtle	as	a	small	change	in	the	cryptography	primitives	that	renders	them	insecure,	or	as	blatant	
as	reading	the	user’s	secret	Key	from	memory	and	sending	it	out	somewhere.	In	either	case,	the	user	
may	not	be	aware	of	anything	being	wrong.	This	is	the	main	reason	why	a	number	of	security	experts	
insist	that	cryptography	cannot	be	made	secure	so	long	as	it	is	based	on	JavaScript.	

PassLok	for	Email	combats	this	attack	in	several	ways:	

1. PassLok	for	Email	contains	no	instructions	that	would	imply	a	connection	to	a	server,	with	one	
well-defined	exception:	ephemeral	keys	are	synced	through	Google	servers.	This	is	done	using	
specific	instructions	that	are	validated	at	both	ends,	using	TLS	connections	at	all	times.	All	
private	items	synced	are	individually	encrypted	with	the	user’s	secret	Key,	salted	with	the	
reported	email	address,	before	they	are	synced.	

2. All	strings	that	might	be	user-generated,	such	as	just-decrypted	plaintext,	are	passed	through	a	
filter	that	deletes	HTML	tags	as	soon	as	the	string	is	decrypted	(JavaScript	instructions	are	
bracketed	between	<script>	and	</script>	tags).	The	idea	is	that,	even	if	someone	manages	to	
slip	malicious	code	into	encrypted	items,	the	code	will	be	stripped	off	before	it	has	a	chance	to	
execute.	

3. PassLok	for	Email	contains	no	instructions,	such	as	EVAL,	that	would	interpret	other	objects	as	
code,	or	any	in-line	code	contained	in	HTML	elements.	This	is	a	good	practice	in	general,	and	is	
enforced	by	Google	for	apps	served	through	the	Chrome	store.	

4. Since	PassLok	for	Email	is	a	Chrome	Content	Script,	and	therefore	it	runs	in	a	sandboxed	
environment	that	other	extensions	do	not	have	access	to,	even	if	they	have	access	to	the	
underlying	email	page.	Additionally,	any	highly	sensitive	piece	of	data,	such	as	the	user’s	
Password,	is	retained	only	temporarily,	and	then	only	through	JavaScript	variables	rather	than	

	 38	

DOM	elements.	In	case	of	doubt	with	a	particular	browser,	open	a	console	window,	navigate	to	
another	extension’s	environment,	and	try	to	load	one	of	PassLok’s	own	global	variables.	A	
success	in	this	test	would	indicate	that	the	browser	does	not	offer	enough	isolation	between	
extensions	to	be	used	securely.	
	

Tracking	
	
PassLok	for	Email	limits	the	ability	of	a	powerful	enemy	to	track	users	by	not	connecting	to	servers	for	its	
proper	functions.	If	a	user	connects	to	a	server	for	sending	or	receiving	an	email,	for	instance,	he/she	
does	so	by	means	of	a	separate	application,	not	through	PassLok.	Mallory,	the	powerful	enemy,	has	no	
way	to	know	that	the	email	was	encrypted	by	PassLok	unless	the	message	itself	is	analyzed,	and	PassLok	
has	steganography	functions	to	make	this	as	difficult	as	possible.	
	
But	PassLok	does	contact	external	servers	under	some	circumstances,	such	as	establishing	a	chat	
connection,	which	involves	contacting	Firebase.io.	Anyone	who	can	view	the	names	of	the	chat	rooms	
set	up	on	this	server	might	be	able	to	identify	one	originating	from	PassLok,	and	might	thus	obtain	the	
user’s	IP	number	by	attempting	to	join	the	chat,	even	if	the	connection	does	not	succeed.	This	is	
especially	dangerous	since	the	chat	connection	will	fail	to	be	established	if	an	anonymizing	tool	is	being	
used.	PassLok	attempts	to	combat	this	situation	by	asking	the	chat	originator	for	a	nondescript	name	for	
the	chat,	which	would	be	hard	to	pick	out	among	the	thousands	of	chat	rooms	existing	at	any	time	on	
this	server.	If	the	user	does	not	provide	a	name,	PassLok	synthesizes	one	by	picking	one	or	two	words	
from	its	built-in	blacklist	of	common	passwords.	
	
In	any	case,	chatroom	information	is	not	enough	to	establish	a	connection.	One	must	also	have	a	256-bit	
random	password,	which	is	different	for	each	chat	invitation	and	is	never	sent	to	any	servers.	The	chat	
program	refused	to	connect	to	anyone	who	does	not	supply	it	correctly.	

	
Timing/Side	channel	
	
It	is	suspected	that	the	time	it	takes	for	many	elliptic-curve	operations	to	complete	is	related	to	the	
numbers	involved	in	the	operation.	Therefore	if	Eve	the	watcher	knows	this	time,	which	possibly	she	can	
deduce	from	the	timing	of	the	messages	exchanged	between	Alice	and	Bob,	then	she	knows	something.	
After	collecting	enough	information,	she	may	be	able	to	guess	one	of	the	secret	keys	within	less	time	
than	it	would	take	to	do	a	full	brute-force	or	dictionary	search.	A	similar	thing	can	be	said	about	other	
non-message	information	collected	from	Alice’s	or	Bob’s	machines.	
	
This	is	a	real	problem	for	cryptography	used	between	computers,	as	in	SSL/TLS,	because	they	are	on	
fixed,	predictable	timers,	machines	talking	with	machines,	but	PassLok	does	not	operate	this	way.	
PassLok	does	not	transmit	anything	automatically;	instead,	its	output	is	sent	to	the	program	that	will	
actually	do	the	transmission	and	the	user	must	still	send	it	manually.	It	would	take	a	user	with	
superhuman	powers	to	do	this	in	a	way	that	the	natural	variability	due	to	manual	operation	would	not	
completely	obfuscate	the	timing	information.	In	addition,	the	elliptic	curve	operations	in	NaCl	have	been	

	 39	

designed	specifically	with	the	criterion	that	they	should	always	take	the	same	amount	of	time	to	
complete.	

Court	order/server	hacking	

The	PassLok	for	Email	code	is	served	from	a	public	servers	administered	by	Google	or	Mozilla.	It	is	
conceivable	that	a	powerful	attacker,	such	as	a	government	agency,	might	gain	access	to	those	servers	
by	legal	means	and	alter	the	code	at	its	source	so	that	security	is	compromised	without	the	users’	
knowledge.	Of	course,	any	code	delivered	by	an	Internet	source	is	vulnerable	to	this	attack,	as	well	as	to	
the	similar	attack	where	hackers	gain	unauthorized	access	to	the	source	server	and	are	thus	able	to	
modify	the	code.	

This	is	perhaps	the	attack	to	which	PassLok	for	Email	is	most	vulnerable.	In	order	to	combat	it,	we	are	
following	this	strategy:	a	SHA256	hash	is	taken	of	every	new	version	of	the	genuine	PassLok	for	Email	
code,	when	compressed	in	.crx	or	.xpi	format,	and	this	is	posted	on	different	servers	from	those	
delivering	the	code.	Users	are	encouraged	to	check	the	hash	before	using	PassLok.	An	item	on	the	Help	
page	gives	simple	instructions	for	doing	this.	To	defend	against	the	possibility	of	someone	being	able	to	
change	the	code	at	all	servers	as	well	the	hashes	at	all	locations	where	they	are	posted,	a	video	of	the	
PassLok	author	(yours	truly)	reading	and	displaying	the	SHA256	of	the	current	version	is	also	
prominently	posted.	This	video	is	protected	from	tampering	by	playing	a	well-known	piece	of	music	in	
the	background.	

Zero-day	

But	what	if	the	attacker	has	compromised	the	browser,	or	the	operating	system,	or	even	the	machine	
itself,	even	before	PassLok	for	Email	is	loaded?	Don’t	many	public	computers	have	keyloggers	installed	
by	their	owners	for	liability	reasons,	just	to	mention	one	likely	pitfall?	

In	this	case,	PassLok’s	defense	is	its	portability.	The	user	only	needs	to	find	a	copy	of	Chrome,	perhaps	
installed	in	a	computer	he/she	has	never	used	before,	and	log	into	it,	and	the	extension	becomes	
available	right	away	with	all	its	data.	If	using	Firefox	(and	also	Chrome),	it	is	possible	to	export	the	
complete	database	of	stored	ephemeral	keys	as	a	text-based	backup	file	containing	encrypted	data,	
which	the	app	will	decrypt	and	load	as	if	decrypting	an	attached	file.	

A	user	that	is	concerned	with	zero-day	vulnerabilities	would	not	use	the	installed	OS,	but	rather	would	
boot	the	machine	from	a	USB	drive	under	his/her	control,	which	contains	a	portable	OS	that	is	open-
source	or	otherwise	trusted.	Operating	systems	that	have	worked	well	in	our	tests	are	Puppy	Linux	
(open	source)	and	Liberté	Linux	(not	open-source,	but	security-oriented).	Both	OS’s	can	save	sessions	
back	to	the	USB	drive	in	encrypted	form,	in	case	an	attacker	gains	access	to	them.	Then	the	user	would	
run	a	local	HTML	copy	of	PassLok	that	has	been	previously	checked	for	authenticity,	rather	than	rely	on	
one	downloaded	from	a	server.	If	hardware	keyloggers	are	a	concern,	both	versions	of	Linux	include	on-
screen	keyboards	that	can	be	used	for	the	most	confidential	parts	of	the	workflow.	Hardware	screen	
loggers	are	unlikely	to	be	installed	undetectably.	

	 40	

Hardware	or	Data	theft	

But	what	if	my	trusted	computer	or	mobile	device	is	stolen,	or	simply	an	attacker	gains	temporary	
access	to	it	so	that	he/she/it	can	copy	whatever	PassLok	for	Email	has	saved	locally	or	will	be	
downloaded	from	the	cloud	as	soon	as	Chrome	starts?	This	is	a	particularly	pressing	concern	for	
machines	that	are	routinely	shared	by	several	people.	If	the	first	incident	happened	to	a	computer	
where	PGP	had	been	installed,	just	to	mention	one	popular	program,	I	would	lose	the	use	of	my	private	
key	if	I	had	not	backed	it	up,	so	that	I’d	be	forced	to	issue	a	key	revocation	certificate	and	come	up	with	
a	new	key.	If	would	be	a	little	better	with	simple	data	theft,	since	private	keys	are	always	stored	
encrypted,	but	then	the	attacker	might	be	able	to	obtain	my	private	key	by	brute	force	or	dictionary	
attack	on	the	encrypted	key,	which	would	not	take	long	to	succeed	if	my	encrypting	passphrase	was	
weak,	and	I’d	never	know.	

Here’s	what	PassLok	does	to	foil	these	attacks:	

1. In	PassLok,	the	user’s	Password	is	never	stored	anywhere,	except	in	RAM.	This	Password	resides	
only	as	a	global	variable,	after	it	has	been	stretched	into	a	private	key.	PassLok	keeps	a	special	
timer	that	tracks	the	last	time	when	the	private	key	was	used,	and	deletes	it	from	RAM	after	five	
minutes	of	inactivity.	

2. PassLok	for	Email	stores	ephemeral	keys	associated	with	other	users,	also	encrypted	by	the	
user’s	Password	(stretched	with	his/her	email	address).	An	attacker	who	obtains	those	could	
guess	the	Password	by	brute	force	or	dictionary	attack,	and	then	he/she/it	would	have	the	
secret	Password	as	well	as	the	contents.	Since	those	items	are	simply	encrypted	with	XSalsa20,	
the	process	would	be	much	faster	than	trying	to	reverse	a	public	key,	but	again,	obtaining	the	
items	themselves	would	be	much	harder	than	obtaining	a	user’s	public	key.	We	consider	the	
difficulty	of	either	attack	to	be	comparable,	and	rely	on	the	strength	of	XSalsa20	augmented	by	
the	variable	key	stretching	process	mentioned	earlier	(which	increases	computational	expense	
for	weaker	keys)	to	protect	against	it.	In	order	not	to	leak	even	the	length	of	an	item,	stored	
items	are	padded	with	spaces	so	they	are	at	least	43	characters	long,	before	encryption	takes	
place.	

3. In	the	event	of	a	user	deciding	that	a	machine	is	no	longer	to	be	trusted,	the	user	only	needs	to	
remove	his/her	login	from	Chrome	and	all	synced	data	will	be	removed	as	well.	Instructions	are	
provided	for	doing	this.	

	 	

	 41	

User	Interface	
	

The	PassLok	for	Email	interface	has	been	designed	to	be	as	simple	and	unobtrusive	as	possible.	By	
design,	there	is	no	settings	page	so	that	all	options,	which	only	relate	to	the	way	data	are	to	be	
encrypted,	are	selected	on	the	encryption	dialog.	The	settings	themselves	are	only	visible	if	the	user	
chooses	to	make	them	so,	otherwise	the	app	operates	with	default	settings,	which	are:	Signed	mode,	no	
steganography,	no	decoy,	no	rich	text	functions.	There	are	three	main	dialogs	in	PassLok	for	Email,	plus	
a	few	secondary	dialogs.	The	main	dialogs	appear	as	jQueryUI-formatted	boxes	when	the	distinctive	
PassLok	icon	is	clicked,	whether	when	composing	or	reading	a	message	on	the	email	page.	All	dialogs	
have	a	Close	button	on	the	upper	right	corner.	The	main	dialogs	are:	

• Encrypt.	This	is	a	modal	box,	so	all	interaction	with	the	underlying	email	page	is	disabled	until	
the	box	is	closed.	Triggered	by	the	PassLok	icon	on	the	email	page’s	Compose	or	Reply	window.	
Closed	when	the	Encrypt	to	Email	or	Close	buttons	are	clicked.	This	box	contains	a	large	area	to	
type	in	a	message,	plus	a	variety	of	buttons	for	settings	below	it.	There	are	two	action	buttons:	
Encrypt	to	Email,	and	Encrypt	to	File.	

• Decrypt.	Not	a	modal	box,	so	interaction	with	the	email	page	remains	active	while	the	dialog	is	
open.	Triggered	by	the	PassLok	button	on	a	received	email	header.	Closed	by	the	regular	Close	
button.	It	contains	an	area	for	the	decrypted	message	and	two	action	buttons:	Decoy	Decrypt,	
to	trigger	decoy	decryption	of	the	message;	and	Decrypt	File,	to	load	and	decrypt	a	file.	

• Password.	Modal	box.	Triggered	whenever	the	app	needs	the	user’s	Password,	which	could	be	
encrypting	or	decrypting,	or	if	the	Password	held	in	memory	has	not	been	used	for	five	minutes.	
The	box	contains	additional	instructions	on	first	use,	to	help	the	user	to	come	up	with	a	good-
quality	Password.	

In	addition,	there	are	other	dialogs	for	entering	an	old	Password,	a	cover	text,	a	hidden	second	message	
or	its	special	Key,	or	to	accept	a	new	public	key,	triggered	by	the	program	itself.	Pages	containing	Help	
or	a	Chat	session	load	as	separate	browser	tabs	independent	from	the	email	page.	

Interaction	with	the	email	page	is	limited	to	the	following:	

1. When	the	page	loads,	PassLok	for	Email	searches	the	page	header	for	the	user’s	own	email	
address,	which	forms	the	salt	add	to	the	user-supplied	Password	to	make	the	user	Key.	It	also	
searches	for	information	identifying	the	service	(Gmail,	Yahoo	or	Outlook).	This	allows	the	app	
to	load	the	correct	set	of	public	keys	and	ephemeral	data,	whether	from	Chrome	sync	or	local	
storage.	

2. A	PassLok	icon	is	injected	into	every	message	header	so	the	user	can	decrypt	it	if	he/she	so	
desires.	In	order	not	to	reveal	PassLok-encrypted	messages,	this	icon	is	injected	into	all	headers	
although	it	is	possible	to	detect	PassLok-encrypted	data	and	display	the	icon	only	if	this	is	found.	
This	also	allows	decryption	of	encrypted	attachments.	

3. When	this	icon	is	clicked,	PassLok	retrieves	the	email	address	of	the	sender	and	the	contents	of	
the	message,	and	feeds	them	into	its	decryption	function.	The	result	is	displayed	in	the	Decrypt	

	 42	

dialog	as	it	loads.	If	decryption	fails,	the	dialog	opens	all	the	same,	displaying	a	message	
indicating	the	failure.	

4. A	PassLok	icon	is	also	injected	into	the	formatting	bar	of	Compose	and	Reply	areas	within	the	
email	page.	When	the	user	clicks	this	icon,	PassLok	for	Email	retrieves	the	recipients’	list	and	
whatever	has	been	typed	into	the	area	and	copies	it	to	the	Encrypt	dialog.	

5. Clicking	the	Encrypt	to	Email	button	on	the	Encrypt	dialog	encrypts	the	contents	of	its	box	for	
the	recipients	and	injects	the	resulting	encrypted	text	into	the	Compose	or	Reply	area	of	the	
email	page.	Then	the	Encrypt	dialog	closes.	

Typically,	browsers	keep	extension	code	and	variables	in	their	own	walled	garden	to	which	other	
extensions	and	the	underlying	pages	have	no	access.	This	protects	PassLok’s	sensitive	data,	such	as	the	
user	Password	and	its	binary	variants,	from	being	snooped	by	a	rogue	extension.	In	case	of	doubt,	open	
a	console	window,	navigate	to	a	different	extension’s	executable	environment,	and	try	to	access	
PassLok’s	own	global	variables.	A	success	in	this	test	will	be	an	indication	that	the	browser	does	not	
offer	enough	isolation	to	be	used	securely.	

	

